Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(8): e1010339, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939521

RESUMEN

In Drosophila embryonic CNS, the multipotential stem cells called neuroblasts (NBs) divide by self-renewing asymmetric division and generate bipotential precursors called ganglion mother cells (GMCs). GMCs divide only once to generate two distinct post-mitotic neurons. The genes and the pathways that confer a single division potential to precursor cells or how neurons become post-mitotic are unknown. It has been suggested that the homeodomain protein Prospero (Pros) when localized to the nucleus, limits the stem-cell potential of precursors. Here we show that nuclear Prospero is phosphorylated, where it binds to chromatin. In NB lineages such as MP2, or GMC lineages such as GMC4-2a, Pros allows the one-division potential, as well as the post-mitotic status of progeny neurons. These events are mediated by augmenting the expression of Cyclin E in the precursor and repressing the expression in post-mitotic neurons. Thus, in the absence of Pros, Cyclin E is downregulated in the MP2 cell. Consequently, MP2 fails to divide, instead, it differentiates into one of the two progeny neurons. In progeny cells, Pros reverses its role and augments the downregulation of Cyclin E, allowing neurons to exit the cell cycle. Thus, in older pros mutant embryos Cyclin E is upregulated in progeny cells. These results elucidate a long-standing problem of division potential of precursors and post-mitotic status of progeny cells and how fine-tuning cyclin E expression in the opposite direction controls these fundamental cellular events. This work also sheds light on the post-translational modification of Pros that determines its cytoplasmic versus nuclear localization.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Ciclina E/genética , Ciclina E/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Factores de Transcripción/genética
2.
FASEB J ; 37(6): e22966, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37227156

RESUMEN

Several lines of evidence indicate that ancestral diet might play an important role in determining offspring's metabolic traits. However, it is not yet clear whether ancestral diet can affect offspring's food choices and feeding behavior. In the current study, taking advantage of Drosophila model system, we demonstrate that paternal Western diet (WD) increases offspring food consumption up to the fourth generation. Paternal WD also induced alterations in F1 offspring brain proteome. Using enrichment analyses of pathways for upregulated and downregulated proteins, we found that upregulated proteins had significant enrichments in terms related to translation and translation factors, whereas downregulated proteins displayed enrichments in small molecule metabolic processes, TCA cycles, and electron transport chain (ETC). Using MIENTURNET miRNA prediction tool, dme-miR-10-3p was identified as the top conserved miRNA predicted to target proteins regulated by ancestral diet. RNAi-based knockdown of miR-10 in the brain significantly increased food consumption, implicating miR-10 as a potential factor in programming feeding behavior. Together, these findings suggest that ancestral nutrition may influence offspring feeding behavior through alterations in miRNAs.


Asunto(s)
MicroARNs , Proteoma , Animales , Proteoma/metabolismo , Dieta Occidental , Drosophila/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Encéfalo/metabolismo
3.
Br J Cancer ; 129(11): 1727-1746, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37752289

RESUMEN

In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.


Asunto(s)
Neoplasias Encefálicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Biopsia Líquida/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Encéfalo/patología , Biomarcadores de Tumor/genética
4.
PLoS Genet ; 16(9): e1009011, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986715

RESUMEN

Neuronal precursor cells undergo self-renewing and non-self-renewing asymmetric divisions to generate a large number of neurons of distinct identities. In Drosophila, primary precursor neuroblasts undergo a varying number of self-renewing asymmetric divisions, with one known exception, the MP2 lineage, which undergoes just one terminal asymmetric division similar to the secondary precursor cells. The mechanism and the genes that regulate the transition from self-renewing to non-self-renewing asymmetric division or the number of times a precursor divides is unknown. Here, we show that the T-box transcription factor, Midline (Mid), couples these events. We find that in mid loss of function mutants, MP2 undergoes additional self-renewing asymmetric divisions, the identity of progeny neurons generated dependent upon Numb localization in the parent MP2. MP2 expresses Mid transiently and an over-expression of mid in MP2 can block its division. The mechanism which directs the self-renewing asymmetric division of MP2 in mid involves an upregulation of Cyclin E. Our results indicate that Mid inhibits cyclin E gene expression by binding to a variant Mid-binding site in the cyclin E promoter and represses its expression without entirely abolishing it. Consistent with this, over-expression of cyclin E in MP2 causes its multiple self-renewing asymmetric division. These results reveal a Mid-regulated pathway that restricts the self-renewing asymmetric division potential of cells via inhibiting cyclin E and facilitating their exit from cell cycle.


Asunto(s)
División Celular/genética , Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Ciclo Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Hormonas Juveniles/genética , Hormonas Juveniles/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética
5.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887150

RESUMEN

Most living organisms have in their genome a sizable proportion of DNA sequences capable of mobilization; these sequences are commonly referred to as transposons, transposable elements (TEs), or jumping genes. Although long thought to have no biological significance, advances in DNA sequencing and analytical technologies have enabled precise characterization of TEs and confirmed their ubiquitous presence across all forms of life. These findings have ignited intense debates over their biological significance. The available evidence now supports the notion that TEs exert major influence over many biological aspects of organismal life. Transposable elements contribute significantly to the evolution of the genome by giving rise to genetic variations in both active and passive modes. Due to their intrinsic nature of mobility within the genome, TEs primarily cause gene disruption and large-scale genomic alterations including inversions, deletions, and duplications. Besides genomic instability, growing evidence also points to many physiologically important functions of TEs, such as gene regulation through cis-acting control elements and modulation of the transcriptome through epigenetic control. In this review, we discuss the latest evidence demonstrating the impact of TEs on genome stability and the underling mechanisms, including those developed to mitigate the deleterious impact of TEs on genomic stability and human health. We have also highlighted the potential therapeutic application of TEs.


Asunto(s)
Elementos Transponibles de ADN , Inestabilidad Genómica , Elementos Transponibles de ADN/genética , Evolución Molecular , Genómica , Humanos , Secuencias Reguladoras de Ácidos Nucleicos , Transcriptoma
6.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884779

RESUMEN

Drosophila's white gene encodes an ATP-binding cassette G-subfamily (ABCG) half-transporter. White is closely related to mammalian ABCG family members that function in cholesterol efflux. Mutants of white have several behavioral phenotypes that are independent of visual defects. This study characterizes a novel defect of white mutants in the acquisition of olfactory memory using the aversive olfactory conditioning paradigm. The w1118 mutants learned slower than wildtype controls, yet with additional training, they reached wildtype levels of performance. The w1118 learning phenotype is also found in the wapricot and wcoral alleles, is dominant, and is rescued by genomic white and mini-white transgenes. Reducing dietary cholesterol strongly impaired olfactory learning for wildtype controls, while w1118 mutants were resistant to this deficit. The w1118 mutants displayed higher levels of cholesterol and cholesterol esters than wildtype under this low-cholesterol diet. Increasing levels of serotonin, dopamine, or both in the white mutants significantly improved w1118 learning. However, serotonin levels were not lower in the heads of the w1118 mutants than in wildtype controls. There were also no significant differences found in synapse numbers within the w1118 brain. We propose that the w1118 learning defect may be due to inefficient biogenic amine signaling brought about by altered cholesterol homeostasis.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G/genética , Transportadoras de Casetes de Unión a ATP/genética , Colesterol en la Dieta/análisis , Colesterol/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Aprendizaje/fisiología , Animales , Colesterol/análisis , Drosophila melanogaster/fisiología , Homeostasis/genética , Metabolismo de los Lípidos/genética , Memoria/fisiología , Mutación/genética , Olfato/genética , Sinapsis/genética
7.
PLoS Genet ; 13(11): e1007094, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29155813

RESUMEN

Axon-guidance by Slit-Roundabout (Robo) signaling at the midline initially guides growth cones to synaptic targets and positions longitudinal axon tracts in discrete bundles on either side of the midline. Following the formation of commissural tracts, Slit is found also in tracts of the commissures and longitudinal connectives, the purpose of which is not clear. The Slit protein is processed into a larger N-terminal peptide and a smaller C-terminal peptide. Here, I show that Slit and Slit-N in tracts interact with Robo to maintain the fasciculation, the inter-tract spacing between tracts and their position relative to the midline. Thus, in the absence of Slit in post-guidance tracts, tracts de-fasciculate, merge with one another and shift their position towards the midline. The Slit protein is proposed to function as a gradient. However, I show that Slit and Slit-N are not freely present in the extracellular milieu but associated with the extracellular matrix (ECM) and both interact with Robo1. Slit-C is tightly associated with the ECM requiring collagenase treatment to release it, and it does not interact with Robo1. These results define a role for Slit and Slit-N in tracts for the maintenance and fasciculation of tracts, thus the maintenance of the hardwiring of the CNS.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Axones/metabolismo , Drosophila/embriología , Drosophila/genética , Matriz Extracelular/metabolismo , Fasciculación/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/metabolismo , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Proteínas Roundabout
8.
Acta Neuropathol ; 138(6): 1033-1052, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31463571

RESUMEN

Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the perivascular niche. Glycosylated αDG is highly expressed and functional on the most aggressive mesenchymal-like (MES-like) GBM tumour compartment. Furthermore, we found that DG acts to maintain an MES-like state via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation in MES-like GBM, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor, not only as a structural element, but also as a critical factor promoting MES-like GBM and the maintenance of GSCs residing in the perivascular niche.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Distroglicanos/metabolismo , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral/fisiología , Animales , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/cirugía , Transformación Celular Neoplásica , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Glioma/irrigación sanguínea , Glioma/cirugía , Humanos , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias
9.
J Neurooncol ; 145(1): 23-34, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31482267

RESUMEN

BACKGROUND AND PURPOSE: microRNAs are small noncoding RNAs that play important roles in cancer regulation. In this study, we investigated the expression, functional effects and mechanisms of action of microRNA-29a (miR-29a) in glioblastoma (GBM). METHODS: miR-29a expression levels in GBM cells, stem cells (GSCs) and human tumors as well as normal astrocytes and normal brain were measured by quantitative PCR. miR-29a targets were uncovered by target prediction algorithms, and verified by immunoblotting and 3' UTR reporter assays. The effects of miR-29a on cell proliferation, death, migration and invasion were assessed with cell counting, Annexin V-PE/7AAD flow cytometry, scratch assay and transwell assay, respectively. Orthotopic xenografts were used to determine the effects of miR-29a on tumor growth. RESULTS: Mir-29a was downregulated in human GBM specimens, GSCs and GBM cell lines. Exogenous expression of miR-29a inhibited GSC and GBM cell growth and induced apoptosis. miR-29a also inhibited GBM cell migration and invasion. PDGFC and PDGFA were uncovered and validated as direct targets of miR-29a in GBM. miR-29a downregulated PDGFC and PDGFA expressions at the transcriptional and translational levels. PDGFC and PDGFA expressions in GBM tumors, GSCs, and GBM established cell lines were higher than in normal brain and human astrocytes. Mir-29a expression inhibited orthotopic GBM xenograft growth. CONCLUSIONS: miR-29a is a tumor suppressor miRNA in GBM, where it inhibits cancer stem cells and tumor growth by regulating the PDGF pathway.


Asunto(s)
Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Linfocinas/metabolismo , MicroARNs/genética , Células Madre Neoplásicas/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Apoptosis , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Movimiento Celular , Proliferación Celular , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Linfocinas/genética , Ratones , Ratones SCID , Células Madre Neoplásicas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Genes Dev ; 25(24): 2594-609, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22190458

RESUMEN

Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Glioma/fisiopatología , Células Madre Mesenquimatosas/citología , Células Madre Neoplásicas/citología , Factores de Transcripción/metabolismo , Aciltransferasas , Animales , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Epigenómica , Regulación Neoplásica de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Células Tumorales Cultivadas
11.
J Neurosci ; 35(45): 15097-112, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26558781

RESUMEN

Glioblastoma (GBM) is the most aggressive human brain tumor. Although several molecular subtypes of GBM are recognized, a robust molecular prognostic marker has yet to be identified. Here, we report that the stemness regulator Sox2 is a new, clinically important target of microRNA-21 (miR-21) in GBM, with implications for prognosis. Using the MiR-21-Sox2 regulatory axis, approximately half of all GBM tumors present in the Cancer Genome Atlas (TCGA) and in-house patient databases can be mathematically classified into high miR-21/low Sox2 (Class A) or low miR-21/high Sox2 (Class B) subtypes. This classification reflects phenotypically and molecularly distinct characteristics and is not captured by existing classifications. Supporting the distinct nature of the subtypes, gene set enrichment analysis of the TCGA dataset predicted that Class A and Class B tumors were significantly involved in immune/inflammatory response and in chromosome organization and nervous system development, respectively. Patients with Class B tumors had longer overall survival than those with Class A tumors. Analysis of both databases indicated that the Class A/Class B classification is a better predictor of patient survival than currently used parameters. Further, manipulation of MiR-21-Sox2 levels in orthotopic mouse models supported the longer survival of the Class B subtype. The MiR-21-Sox2 association was also found in mouse neural stem cells and in the mouse brain at different developmental stages, suggesting a role in normal development. Therefore, this mechanism-based classification suggests the presence of two distinct populations of GBM patients with distinguishable phenotypic characteristics and clinical outcomes. SIGNIFICANCE STATEMENT: Molecular profiling-based classification of glioblastoma (GBM) into four subtypes has substantially increased our understanding of the biology of the disease and has pointed to the heterogeneous nature of GBM. However, this classification is not mechanism based and its prognostic value is limited. Here, we identify a new mechanism in GBM (the miR-21-Sox2 axis) that can classify ∼50% of patients into two subtypes with distinct molecular, radiological, and pathological characteristics. Importantly, this classification can predict patient survival better than the currently used parameters. Further, analysis of the miR-21-Sox2 relationship in mouse neural stem cells and in the mouse brain at different developmental stages indicates that miR-21 and Sox2 are predominantly expressed in mutually exclusive patterns, suggesting a role in normal neural development.


Asunto(s)
Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/metabolismo , Glioblastoma/clasificación , Glioblastoma/metabolismo , MicroARNs/biosíntesis , Factores de Transcripción SOXB1/biosíntesis , Animales , Biomarcadores de Tumor/biosíntesis , Neoplasias Encefálicas/diagnóstico , Células Cultivadas , Glioblastoma/diagnóstico , Humanos , Masculino , Ratones , Ratones Desnudos , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia/tendencias
12.
PLoS Genet ; 9(12): e1004050, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24385932

RESUMEN

Guiding axon growth cones towards their targets is a fundamental process that occurs in a developing nervous system. Several major signaling systems are involved in axon-guidance, and disruption of these systems causes axon-guidance defects. However, the specific role of the environment in which axons navigate in regulating axon-guidance has not been examined in detail. In Drosophila, the ventral nerve cord is divided into segments, and half-segments and the precursor neuroblasts are formed in rows and columns in individual half-segments. The row-wise expression of segment-polarity genes within the neuroectoderm provides the initial row-wise identity to neuroblasts. Here, we show that in embryos mutant for the gene midline, which encodes a T-box DNA binding protein, row-2 neuroblasts and their neuroectoderm adopt a row-5 identity. This reiteration of row-5 ultimately creates a non-permissive zone or a barrier, which prevents the extension of interneuronal longitudinal tracts along their normal anterior-posterior path. While we do not know the nature of the barrier, the axon tracts either stall when they reach this region or project across the midline or towards the periphery along this zone. Previously, we had shown that midline ensures ancestry-dependent fate specification in a neuronal lineage. These results provide the molecular basis for the axon guidance defects in midline mutants and the significance of proper specification of the environment to axon-guidance. These results also reveal the importance of segmental polarity in guiding axons from one segment to the next, and a link between establishment of broad segmental identity and axon guidance.


Asunto(s)
Axones/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Proteínas de Drosophila/genética , Neurogénesis/genética , Proteínas de Dominio T Box/genética , Animales , Axones/metabolismo , Tipificación del Cuerpo/genética , Linaje de la Célula/genética , Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Embrión no Mamífero/metabolismo , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas de Dominio T Box/metabolismo
13.
Cancer Cell ; 12(4): 355-66, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17936560

RESUMEN

It is believed that Mdm2 suppresses p53 in two ways: transcriptional inhibition by direct binding, and degradation via its E3 ligase activity. To study these functions physiologically, we generated mice bearing a single-residue substitution (C462A) abolishing the E3 function without affecting p53 binding. Unexpectedly, homozygous mutant mice died before E7.5, and deletion of p53 rescued the lethality. Furthermore, reintroducing a switchable p53 by crossing with p53ER(TAM) mice surprisingly demonstrated that the mutant Mdm2(C462A) was rapidly degraded in a manner indistinguishable from that of the wild-type Mdm2. Hence, our data indicate that (1) the Mdm2-p53 physical interaction, without Mdm2-mediated p53 ubiquitination, cannot control p53 activity sufficiently to allow early mouse embryonic development, and (2) Mdm2's E3 function is not required for Mdm2 degradation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mutagénesis Sitio-Dirigida , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Sustitución de Aminoácidos , Animales , Células Cultivadas , Daño del ADN , Regulación hacia Abajo , Embrión de Mamíferos , Fibroblastos/enzimología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Rayos gamma , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Genotipo , Edad Gestacional , Homocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/deficiencia , Proteínas Proto-Oncogénicas c-mdm2/genética , Transcripción Genética/efectos de la radiación , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
14.
Genetics ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805187

RESUMEN

The T-box proteins have a 180-230 amino acid DNA-binding domain, first reported in the Brachyury (T) protein. It is highly conserved among metazoans. They regulate a multitude of cellular functions in development and disease. Here, we report post-transcriptional and translational regulation of midline (mid), a Tbx member in Drosophila. We found that the 3'UTR of mid has mRNA degradation elements and AT-rich sequences. In Schneider S2 cells, mid mRNA could be detected only when the transgene was without the 3'UTR. Similarly, the 3'UTR linked to the Renilla Luciferase reporter significantly reduced the activity of the Luciferase. Whereas deleting only the degradation elements from the 3'UTR resulted in reduced activity but not as much. Overexpression of mid in MP2, an embryonic neuroblast, showed no significant difference in the levels of mid mRNA between the two transgenes, with and without the 3'UTR, indicating the absence of post-transcriptional regulation of mid in MP2. Moreover, while elevated mid RNA was detected in MP2 in nearly all hemisegments, only a fifth of those hemisegments had elevated levels of the protein. Over-expression of the two transgenes resulted in MP2-lineage defects about the same frequency. These results indicate a translational/post-translational regulation of mid in MP2. The regulation of ectopically expressed mid in the wing imaginal disc was complex. In the wing disc, where mid is not expressed, the ectopic expression of the transgene lacking the 3'UTR had a higher level of mid RNA and the protein and had a stronger phenotypic effect. These results indicate that the 3'UTR can subject mid-mRNA to degradation in a cell and tissue-specific manner. We further report a balancer-mediated transgenerational modifier effect on the expression and gain of function effects of the two transgenes.

15.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38854005

RESUMEN

Cardiomyopathy, disease of the heart muscle, is a significant contributor to heart failure. The pathogenesis of cardiomyopathy is multifactorial and involves genetic, environmental, and lifestyle factors. Identifying and characterizing novel genes that contribute to cardiac pathophysiology are crucial for understanding cardiomyopathy and effective therapies. In this study, we investigated the role of a novel gene, Obg-like ATPase 1 ( Ola1 ), in cardiac pathophysiology using a cardiac-specific knockout mouse model as well as a Drosophila model. Our previous work demonstrated that OLA1 modulates the hypertrophic response of cardiomyocytes through the GSK-beta/beta-catenin signaling pathway. Furthermore, recent studies have suggested that OLA1 plays a critical role in organismal growth and development. For example, Ola1 null mice exhibit increased heart size and growth retardation. It is not known, however, if loss of function for Ola1 leads to dilated cardiomyopathy. We generated cardiac-specific Ola1 knockout mice (OLA1-cKO) to evaluate the role of OLA1 in cardiac pathophysiology. We found that Ola1 -cKO in mice leads to dilated cardiomyopathy (DCM) and left ventricular (LV) dysfunction. These mice developed severe LV dilatation, thinning of the LV wall, reduced LV function, and, in some cases, ventricular wall rupture and death. In Drosophila, RNAi-mediated knock-down specifically in developing heart cells led to the change in the structure of pericardial cells from round to elongated, and abnormal heart function. This also caused significant growth reduction and pupal lethality. Thus, our findings suggest that OLA1 is critical for cardiac homeostasis and that its deficiency leads to dilated cardiomyopathy and dysfunction. Furthermore, our study highlights the potential of the Ola1 gene as a therapeutic target for dilated cardiomyopathy and heart failure.

16.
Front Oncol ; 14: 1403052, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912065

RESUMEN

Introduction: Vestigial-like 1 (VGLL1) is a co-transcriptional activator that binds to TEA domain-containing transcription factors (TEADs). Its expression is upregulated in a variety of aggressive cancer types, including pancreatic and basal-like breast cancer, and increased transcription of VGLL1 is strongly correlated with poor prognosis and decreased overall patient survival. In normal tissues, VGLL1 is most highly expressed within placental trophoblast cells, which share the common attributes of rapid cellular proliferation and invasion with tumor cells. The impact of VGLL1 in cancer has not been fully elucidated and no VGLL1-targeted therapy currently exists. Methods: The aim of this study was to evaluate the cellular function and downstream genomic targets of VGLL1 in placental, pancreatic, and breast cancer cells. Functional assays were employed to assess the role of VGLL1 in cellular invasion and proliferation, and ChIP-seq and RNAseq assays were performed to identify VGLL1 target genes and potential impact using pathway analysis. Results: ChIP-seq analysis identified eight transcription factors with a VGLL1-binding motif that were common between all three cell types, including TEAD1-4, AP-1, and GATA6, and revealed ~3,000 shared genes with which VGLL1 interacts. Furthermore, increased VGLL1 expression led to an enhancement of cell invasion and proliferation, which was supported by RNAseq analysis showing transcriptional changes in several genes known to be involved in these processes. Discussion: This work expands our mechanistic understanding of VGLL1 function in tumor cells and provides a strong rationale for developing VGLL1-targeted therapies for treating cancer patients.

17.
Cell Rep Med ; : 101658, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39053460

RESUMEN

The DNA damage response (DDR) and the blood-tumor barrier (BTB) restrict chemotherapeutic success for primary brain tumors like glioblastomas (GBMs). Coherently, GBMs almost invariably relapse with fatal outcomes. Here, we show that the interaction of GBM and myeloid cells simultaneously induces chemoresistance on the genetic and vascular levels by activating GP130 receptor signaling, which can be addressed therapeutically. We provide data from transcriptomic and immunohistochemical screens with human brain material and pharmacological experiments with a humanized organotypic GBM model, proteomics, transcriptomics, and cell-based assays and report that nanomolar concentrations of the signaling peptide humanin promote temozolomide (TMZ) resistance through DDR activation. GBM mouse models recapitulating intratumoral humanin release show accelerated BTB formation. GP130 blockade attenuates both DDR activity and BTB formation, resulting in improved preclinical chemotherapeutic efficacy. Altogether, we describe an overarching mechanism for TMZ resistance and outline a translatable strategy with predictive markers to improve chemotherapy for GBMs.

18.
Cancer Cell ; 42(1): 85-100.e6, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38157865

RESUMEN

Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.


Asunto(s)
Interleucina-17 , Neoplasias Pancreáticas , Ratones , Animales , Humanos , Receptores de Interleucina-17/genética , Ratones Noqueados , Transducción de Señal , Neoplasias Pancreáticas/patología
19.
Neuro Oncol ; 26(5): 826-839, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38237157

RESUMEN

BACKGROUND: Glioblastomas (GBMs) are central nervous system tumors that resist standard-of-care interventions and even immune checkpoint blockade. Myeloid cells in the tumor microenvironment can contribute to GBM progression; therefore, emerging immunotherapeutic approaches include reprogramming these cells to achieve desirable antitumor activity. Triggering receptor expressed on myeloid cells 2 (TREM2) is a myeloid signaling regulator that has been implicated in a variety of cancers and neurological diseases with contrasting functions, but its role in GBM immunopathology and progression is still under investigation. METHODS: Our reverse translational investigations leveraged single-cell RNA sequencing and cytometry of human gliomas to characterize TREM2 expression across myeloid subpopulations. Using 2 distinct murine glioma models, we examined the role of Trem2 on tumor progression and immune modulation of myeloid cells. Furthermore, we designed a method of tracking phagocytosis of glioma cells in vivo and employed in vitro assays to mechanistically understand the influence of TREM2 signaling on tumor uptake. RESULTS: We discovered that TREM2 expression does not correlate with immunosuppressive pathways, but rather showed strong a positive association with the canonical phagocytosis markers lysozyme (LYZ) and macrophage scavenger receptor (CD163) in gliomas. While Trem2 deficiency was found to be dispensable for gliomagenesis, Trem2+ myeloid cells display enhanced tumor uptake compared to Trem2- cells. Mechanistically, we demonstrate that TREM2 mediates phagocytosis via Syk signaling. CONCLUSIONS: These results indicate that TREM2 is not associated with immunosuppression in gliomas. Instead, TREM2 is an important regulator of phagocytosis that may be exploited as a potential therapeutic strategy for brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glicoproteínas de Membrana , Fagocitosis , Receptores Inmunológicos , Animales , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Humanos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Microambiente Tumoral , Células Mieloides/metabolismo , Ratones Endogámicos C57BL , Células Tumorales Cultivadas , Transducción de Señal
20.
PLoS One ; 18(2): e0277176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36795646

RESUMEN

Tumor growth is a spatiotemporal birth-and-death process with loss of heterotypic contact-inhibition of locomotion (CIL) of tumor cells promoting invasion and metastasis. Therefore, representing tumor cells as two-dimensional points, we can expect the tumor tissues in histology slides to reflect realizations of spatial birth-and-death process which can be mathematically modeled to reveal molecular mechanisms of CIL, provided the mathematics models the inhibitory interactions. Gibbs process as an inhibitory point process is a natural choice since it is an equilibrium process of the spatial birth-and-death process. That is if the tumor cells maintain homotypic contact inhibition, the spatial distributions of tumor cells will result in Gibbs hard core process over long time scales. In order to verify if this is the case, we applied the Gibbs process to 411 TCGA Glioblastoma multiforme patient images. Our imaging dataset included all cases for which diagnostic slide images were available. The model revealed two groups of patients, one of which - the "Gibbs group," showed the convergence of the Gibbs process with significant survival difference. Further smoothing the discretized (and noisy) inhibition metric, for both increasing and randomized survival time, we found a significant association of the patients in the Gibbs group with increasing survival time. The mean inhibition metric also revealed the point at which the homotypic CIL establishes in tumor cells. Besides, RNAseq analysis between patients with loss of heterotypic CIL and intact homotypic CIL in the Gibbs group unveiled cell movement gene signatures and differences in Actin cytoskeleton and RhoA signaling pathways as key molecular alterations. These genes and pathways have established roles in CIL. Taken together, our integrated analysis of patient images and RNAseq data provides for the first time a mathematical basis for CIL in tumors, explains survival as well as uncovers the underlying molecular landscape for this key tumor invasion and metastatic phenomenon.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Movimiento Celular/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA