Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Stem Cells ; 37(3): 417-429, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30548157

RESUMEN

Mutations in key transcription factors SOX2 and P63 were linked with developmental defects and postnatal abnormalities such as corneal opacification, neovascularization, and blindness. The latter phenotypes suggest that SOX2 and P63 may be involved in corneal epithelial regeneration. Although P63 has been shown to be a key regulator of limbal stem cells, the expression pattern and function of SOX2 in the adult cornea remained unclear. Here, we show that SOX2 regulates P63 to control corneal epithelial stem/progenitor cell function. SOX2 and P63 were co-expressed in the stem/progenitor cell compartments of the murine cornea in vivo and in undifferentiated human limbal epithelial stem/progenitor cells in vitro. In line, a new consensus site that allows SOX2-mediated regulation of P63 enhancer was identified while repression of SOX2 reduced P63 expression, suggesting that SOX2 is upstream to P63. Importantly, knockdown of SOX2 significantly attenuated cell proliferation, long-term colony-forming potential of stem/progenitor cells, and induced robust cell differentiation. However, this effect was reverted by forced expression of P63, suggesting that SOX2 acts, at least in part, through P63. Finally, miR-450b was identified as a direct repressor of SOX2 that was required for SOX2/P63 downregulation and cell differentiation. Altogether, we propose that SOX2/P63 pathway is an essential regulator of corneal stem/progenitor cells while mutations in SOX2 or P63 may disrupt epithelial regeneration, leading to loss of corneal transparency and blindness. Stem Cells 2019;37:417-429.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Epitelio Corneal/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Alcaloides , Animales , Ratones , Células 3T3 NIH , Piperidinas , Factores de Transcripción SOXB1/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
2.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260422

RESUMEN

Enteroendocrine cells (EECs), which secrete serotonin (enterochromaffin cells, EC) or a dominant peptide hormone, serve vital physiologic functions. As with any adult human lineage, the basis for terminal cell diversity remains obscure. We replicated human EEC differentiation in vitro , mapped transcriptional and chromatin dynamics that culminate in discrete cell types, and studied abundant EEC precursors expressing selected transcription factors (TFs) and gene programs. Before expressing the pre-terminal factor NEUROD1, non-replicating precursors oscillated between epigenetically similar but transcriptionally distinct ASCL1 + and HES6 hi cell states. Loss of either factor substantially accelerated EEC differentiation and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and hormone-producing cell features. Expressed late in EEC differentiation, the latter TFs mainly bind cis -elements that are accessible in undifferentiated stem cells and tailor the subsequent expression of TF combinations that specify EEC types. Thus, TF oscillations retard EEC maturation to enable accurate EEC diversification.

3.
Cell Stem Cell ; 31(7): 1038-1057.e11, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733993

RESUMEN

Enteroendocrine cells (EECs) secrete serotonin (enterochromaffin [EC] cells) or specific peptide hormones (non-EC cells) that serve vital metabolic functions. The basis for terminal EEC diversity remains obscure. By forcing activity of the transcription factor (TF) NEUROG3 in 2D cultures of human intestinal stem cells, we replicated physiologic EEC differentiation and examined transcriptional and cis-regulatory dynamics that culminate in discrete cell types. Abundant EEC precursors expressed stage-specific genes and TFs. Before expressing pre-terminal NEUROD1, post-mitotic precursors oscillated between transcriptionally distinct ASCL1+ and HES6hi cell states. Loss of either factor accelerated EEC differentiation substantially and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and non-EC cell features. These TFs mainly bind cis-elements that are accessible in undifferentiated stem cells, and they tailor subsequent expression of TF combinations that underlie discrete EEC identities. Thus, early TF oscillations retard EEC maturation to enable accurate diversity within a medically important cell lineage.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Células Enteroendocrinas , Factores de Transcripción , Humanos , Células Enteroendocrinas/metabolismo , Células Enteroendocrinas/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Linaje de la Célula
4.
Cell Death Dis ; 15(2): 174, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409173

RESUMEN

miR-184-knockout mice display perturbed epidermal stem cell differentiation. However, the potential role of miR-184 in skin pathology is unclear. Here, we report that miR-184 controls epidermal stem cell dynamics and that miR-184 ablation enhances skin carcinogenesis in mice. In agreement, repression of miR-184 in human squamous cell carcinoma (SCC) enhances neoplastic hallmarks of human SCC cells in vitro and tumor development in vivo. Characterization of miR-184-regulatory network, suggests that miR-184 inhibits pro-oncogenic pathways, cell proliferation, and epithelial to mesenchymal transformation. Of note, depletion of miR-184 enhances the levels of ß-catenin under homeostasis and following experimental skin carcinogenesis. Finally, the repression of ß-catenin by miR-184, inhibits the neoplastic phenotype of SCC cells. Taken together, miR-184 behaves as an epidermal tumor suppressor, and may provide a potentially useful target for skin SCC therapy.


Asunto(s)
Carcinoma de Células Escamosas , MicroARNs , Neoplasias Cutáneas , Animales , Humanos , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Carcinogénesis/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
5.
Stem Cell Reports ; 18(12): 2313-2327, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039972

RESUMEN

Recently, the murine cornea has reemerged as a robust stem cell (SC) model, allowing individual SC tracing in living animals. The cornea has pioneered seminal discoveries in SC biology and regenerative medicine, from the first corneal transplantation in 1905 to the identification of limbal SCs and their transplantation to successfully restore vision in the early 1990s. Recent experiments have exposed unexpected properties attributed to SCs and progenitors and revealed flexibility in the differentiation program and a key role for the SC niche. Here, we discuss the limbal SC model and its broader relevance to other tissues, disease, and therapy.


Asunto(s)
Epitelio Corneal , Limbo de la Córnea , Ratones , Animales , Córnea , Células Madre , Diferenciación Celular , Trasplante de Células Madre
6.
Cell Death Differ ; 30(6): 1601-1614, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37095157

RESUMEN

The cell fate decisions of stem cells (SCs) largely depend on signals from their microenvironment (niche). However, very little is known about how biochemical niche cues control cell behavior in vivo. To address this question, we focused on the corneal epithelial SC model in which the SC niche, known as the limbus, is spatially segregated from the differentiation compartment. We report that the unique biomechanical property of the limbus supports the nuclear localization and function of Yes-associated protein (YAP), a putative mediator of the mechanotransduction pathway. Perturbation of tissue stiffness or YAP activity affects SC function as well as tissue integrity under homeostasis and significantly inhibited the regeneration of the SC population following SC depletion. In vitro experiments revealed that substrates with the rigidity of the corneal differentiation compartment inhibit nuclear YAP localization and induce differentiation, a mechanism that is mediated by the TGFß-SMAD2/3 pathway. Taken together, these results indicate that SC sense biomechanical niche signals and that manipulation of mechano-sensory machinery or its downstream biochemical output may bear fruits in SC expansion for regenerative therapy.


Asunto(s)
Epitelio Corneal , Limbo de la Córnea , Proteínas Señalizadoras YAP , Diferenciación Celular , Epitelio Corneal/metabolismo , Mecanotransducción Celular , Nicho de Células Madre , Células Madre/metabolismo , Humanos , Proteínas Señalizadoras YAP/metabolismo
7.
Trends Cell Biol ; 32(1): 4-7, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801376

RESUMEN

Recent studies highlight how stem cells (SCs) perceive and respond to various biomechanical cues from the extracellular niche and neighboring cells. These combined inputs drive certain stem cell behaviors, including cell fate decisions, and may influence aging and disease.


Asunto(s)
Fenómenos Biomecánicos , Células Madre , Diferenciación Celular/fisiología , Humanos , Células Madre/citología
8.
Cell Stem Cell ; 28(7): 1248-1261.e8, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33984282

RESUMEN

The accessibility and transparency of the cornea permit robust stem cell labeling and in vivo cell fate mapping. Limbal epithelial stem cells (LSCs) that renew the cornea are traditionally viewed as rare, slow-cycling cells that follow deterministic rules dictating their self-renewal or differentiation. Here, we combined single-cell RNA sequencing and advanced quantitative lineage tracing for in-depth analysis of the murine limbal epithelium. These analysis revealed the co-existence of two LSC populations localized in separate and well-defined sub-compartments, termed the "outer" and "inner" limbus. The primitive population of quiescent outer LSCs participates in wound healing and boundary formation, and these cells are regulated by T cells, which serve as a niche. In contrast, the inner peri-corneal limbus hosts active LSCs that maintain corneal epithelial homeostasis. Quantitative analyses suggest that LSC populations are abundant, following stochastic rules and neutral drift dynamics. Together these results demonstrate that discrete LSC populations mediate corneal homeostasis and regeneration.


Asunto(s)
Limbo de la Córnea , Células Madre , Animales , Córnea , Homeostasis , Ratones , Cicatrización de Heridas
9.
Stem Cell Reports ; 10(3): 1088-1101, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29456180

RESUMEN

The transition from naive to primed state of pluripotent stem cells is hallmarked by epithelial-mesenchymal transition, metabolic switch from oxidative phosphorylation to aerobic glycolysis, and changes in the epigenetic landscape. Since these changes are also seen as putative hallmarks of neoplastic cell transformation, we hypothesized that oncogenic pathways may be involved in this process. We report that the activity of RAS is repressed in the naive state of mouse embryonic stem cells (ESCs) and that all three RAS isoforms are significantly activated upon early differentiation induced by LIF withdrawal, embryoid body formation, or transition to the primed state. Forced expression of active RAS and RAS inhibition have shown that RAS regulates glycolysis, CADHERIN expression, and the expression of repressive epigenetic marks in pluripotent stem cells. Altogether, this study indicates that RAS is located at a key junction of early ESC differentiation controlling key processes in priming of naive cells.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Proteínas ras/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Cuerpos Embrioides/metabolismo , Cuerpos Embrioides/fisiología , Epigénesis Genética/fisiología , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/fisiología , Isoformas de Proteínas/metabolismo , Transducción de Señal/fisiología
10.
Stem Cell Reports ; 9(6): 1991-2004, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29198823

RESUMEN

miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis.


Asunto(s)
Ceguera/genética , Diferenciación Celular/genética , Epidermis/crecimiento & desarrollo , MicroARNs/genética , Animales , Ceguera/patología , Proliferación Celular/genética , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Queratina-15/genética , Ratones , Ratones Noqueados , Oxigenasas de Función Mixta/genética , Fosfoproteínas/genética , Receptores Notch/genética , Transducción de Señal/genética , Células Madre/metabolismo , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA