Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Theor Appl Genet ; 135(3): 1113-1128, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34985536

RESUMEN

KEY MESSAGE: The pleiotropic SNPs/haplotypes, overlapping genes (metal ion binding, photosynthesis), and homozygous/biallelic SNPs and transcription factors (HTH myb-type and BHLH) hold great potential for improving wheat yield potential on sodic-dispersive soils. Sodic-dispersive soils have multiple subsoil constraints including poor soil structure, alkaline pH and subsoil toxic elemental ion concentration, affecting growth and development in wheat. Tolerance is required at all developmental stages to enhance wheat yield potential on such soils. An in-depth investigation of genome-wide associations was conducted using a field phenotypic data of 206 diverse Focused Identification of Germplasm Strategy (FIGS) wheat lines for two consecutive years from different sodic and non-sodic plots and the exome targeted genotyping by sequencing (tGBS) assay. A total of 39 quantitative trait SNPs (QTSs), including 18 haplotypes were identified on chromosome 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 5A, 5D, 6B, 7A, 7B, 7D for yield and yield-components tolerance. Among these, three QTSs had common associations for multiple traits, indicating pleiotropism and four QTSs had close associations for multiple traits, within 32.38 Mb. The overlapping metal ion binding (Mn, Ca, Zn and Al) and photosynthesis genes and transcription factors (PHD-, Dof-, HTH myb-, BHLH-, PDZ_6-domain) identified are known to be highly regulated during germination, maximum stem elongation, anthesis, and grain development stages. The homozygous/biallelic SNPs having allele frequency above 30% were identified for yield and crop establishment/plants m-2. These SNPs correspond to HTH myb-type and BHLH transcription factors, brassinosteroid signalling pathway, kinase activity, ATP and chitin binding activity. These resources are valuable in haplotype-based breeding and genome editing to improve yield potential on sodic-dispersive soils.


Asunto(s)
Suelo , Triticum , Alelos , Haplotipos , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Triticum/genética
2.
Genomics ; 113(3): 910-918, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33600945

RESUMEN

Weeds are the biggest threat to cropping system sustainability in wheat. Metribuzin is a versatile herbicide for broad-spectrum weed management. Understanding key genes, mechanisms and functional markers are essential to develop higher metribuzin tolerant wheats. We identified Chuan Mai 25 (tolerant) and Ritchie (susceptible) as contrasting genotypes to metribuzin stress through dose-response analyses. Transcriptome sequencing using NovaSeq 6000 RNA-Seq platform identified a total of 77,443 genes; 59,915 known genes and 17,528 novel genes. The functional enrichment analysis at 0 h, 24 h and 60 h herbicide exposure revealed that endogenous increase of metabolic enzymes, light-harvesting chlorophyll proteins, PSII stability factor HCF136 and glucose metabolism conferred metribuzin tolerance. The validation of DEGs using RT-qPCR and QTL mapping confirmed their responsiveness to metribuzin. Transcription factors MYB, AP2-EREBP, ABI3VP1, bHLH, NAC are significantly expressed during metribuzin stress. Transcripts with significant enrichments revealed 114 SSRs for genomic selection. The master regulators provide promising avenues for enhancing metribuzin tolerance.


Asunto(s)
Pan , Triticum , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Triazinas/metabolismo , Triticum/genética , Triticum/metabolismo
3.
BMC Plant Biol ; 19(1): 457, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664905

RESUMEN

BACKGROUND: Herbicide tolerance is an important trait that allows effective weed management in wheat crops in dryland farming. Genetic knowledge of metribuzin tolerance in wheat is needed to develop new cultivars for the industry. Here, we investigated gene effects for metribuzin tolerance in nine crosses of wheat by partitioning the means and variances of six basic generations from each cross into their genetic components to assess the gene action governing the inheritance of this trait. Metribuzin tolerance was measured by a visual senescence score 21 days after treatment. The wheat 90 K iSelect SNP genotyping assay was used to identify the distribution of alleles at SNP sites in tolerant and susceptible groups. RESULTS: The scaling and joint-scaling tests indicated that the inheritance of metribuzin tolerance in wheat was adequately described by the additive-dominance model, with additive gene action the most significant factor for tolerance. The potence ratio for all the crosses ranged between - 1 and + 1 for senescence under metribuzin-treated conditions indicating a semi-dominant gene action in the inheritance of metribuzin tolerance in wheat. The number of segregating genes governing metribuzin tolerance was estimated between 3 and 15. The consistent high heritability range (0.82 to 0.92) in F5-7 generations of Chuan Mai 25 (tolerant) × Ritchie (susceptible) cross indicated a significant contribution of additive genetic effects to metribuzin tolerance in wheat. Several genes related to photosynthesis (e.g. photosynthesis system II assembly factor YCF48), metabolic detoxification of xenobiotics and cell growth and development (cytochrome P450, glutathione S-transferase, glycosyltransferase, ATP-binding cassette transporters and glutathione peroxidase) were identified on different chromosomes (2A, 2D, 3B, 4A, 4B, 7A, 7B, 7D) governing metribuzin tolerance. CONCLUSIONS: The simple additive-dominance gene effects for metribuzin tolerance will help breeders to select tolerant lines in early generations and the identified genes may guide the development of functional markers for metribuzin tolerance.


Asunto(s)
Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Herencia , Polimorfismo de Nucleótido Simple , Triazinas/farmacología , Triticum/genética , Estudios de Asociación Genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo
4.
BMC Genet ; 19(1): 102, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30419811

RESUMEN

BACKGROUND: Herbicide tolerance is an important trait that allows effective weed management in wheat crops. Genetic knowledge of metribuzin tolerance in wheat is needed to develop new cultivars for the industry. Here, we evaluated metribuzin tolerance in a recombinant inbred line (RIL) mapping population derived from Synthetic W7984 and Opata 85 over two consecutive years to identify quantitative trait loci (QTL) contributing to the trait. Herbicide tolerance was measured by two chlorophyll traits, SPAD chlorophyll content index (CCI) and visual senescence score (SNS). The markers associated with major QTL from Synthetic W7984, positively contributing to reduced phytotoxic effects under herbicide treatment were validated in two F3/4 recombinant inbred populations developed from crosses of Synthetic W7984 × Westonia and Synthetic W7984 × Lang. RESULTS: Composite interval mapping (CIM) identified four QTL, two on chromosome 4A and one each on chromosomes 2D and 1A. The chromosomal position of the two QTL mapped on 4A within 10 cM intervals was refined and validated by multiple interval mapping (MIM). The major QTL affecting both measures of tolerance jointly explained 42 and 45% of the phenotypic variation by percentage CCI reduction and SNS, respectively. The identified QTL have a pure additive effect. The metribuzin tolerant allele of markers, Xgwm33 and Xbarc343, conferred lower phytotoxicity and explained the maximum phenotypic variation of 28.8 and 24.5%, respectively. The approximate physical localization of the QTL revealed the presence of five candidate genes (ribulose-bisphosphate carboxylase, oxidoreductase (rbcS), glycosyltransferase, serine/threonine-specific protein kinase and phosphotransferase) with a direct role in photosynthesis and/or metabolic detoxification pathways. CONCLUSION: Metribuzin causes photo-inhibition by interrupting electron flow in PSII. Consequently, chlorophyll traits enabled the measure of high proportion of genetic variability in the mapping population. The validated molecular markers associated with metribuzin tolerance mediating QTL may be used in marker-assisted breeding to select metribuzin tolerant lines. Alternatively, validated favourable alleles could be introgressed into elite wheat cultivars to enhance metribuzin tolerance and improve grain yield in dryland farming for sustainable wheat production.


Asunto(s)
Resistencia a Medicamentos/genética , Herbicidas/toxicidad , Sitios de Carácter Cuantitativo , Triazinas/toxicidad , Triticum/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Clorofila/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas , Genotipo , Fenotipo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Poliploidía , Triticum/genética
5.
Plant Genome ; 17(1): e20358, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37265088

RESUMEN

Climate change is varying the availability of resources, soil physicochemical properties, and rainfall events, which collectively determines soil physical and chemical properties. Soil constraints-acidity (pH < 6), salinity (pH ≤ 8.5), sodicity, and dispersion (pH > 8.5)-are major causes of wheat yield loss in arid and semiarid cropping systems. To cope with changing environments, plants employ adaptive strategies such as phenotypic plasticity, a key multifaceted trait, to promote shifts in phenotypes. Adaptive strategies for constrained soils are complex, determined by key functional traits and genotype × environment × management interactions. The understanding of the molecular basis of stress tolerance is particularly challenging for plasticity traits. Advances in sequencing and high-throughput genomics technologies have identified functional alleles in gene-rich regions, haplotypes, candidate genes, mechanisms, and in silico gene expression profiles at various growth developmental stages. Our review focuses on favorable alleles for enhanced gene expression, quantitative trait loci, and epigenetic regulation of plant responses to soil constraints, including heavy metal stress and nutrient limitations. A strategy is then described for quantitative traits in wheat by investigating significant alleles and functional characterization of variants, followed by gene validation using advanced genomic tools, and marker development for molecular breeding and genome editing. Moreover, the review highlights the progress of gene editing in wheat, multiplex gene editing, and novel alleles for smart control of gene expression. Application of these advanced genomic technologies to enhance plasticity traits along with soil management practices will be an effective tool to build yield, stability, and sustainability on constrained soils in the face of climate change.


Asunto(s)
Suelo , Triticum , Triticum/genética , Cambio Climático , Epigénesis Genética , Adaptación Fisiológica/genética , Genómica
6.
Prep Biochem Biotechnol ; 43(4): 350-63, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23464918

RESUMEN

Gallic acid (3,4,5-trihydroxybenzoic acid) was produced by microbial biotransformation of coffee pulp tannins by Penicillium verrucosum. Gallic acid production was optimized using response surface methodology (RSM) based on central composite rotatable design. Process parameters such as pH, moisture, and fermentation period were considered for optimization. Among the various fungi isolated from coffee by-products, Penicillium verrucosum produced 35.23 µg/g of gallic acid on coffee pulp as sole carbon source in solid-state fermentation. The optimum values of the parameters obtained from the RSM were pH 3.32, moisture 58.40%, and fermentation period of 96 hr. Gallic acid production with an increase of 4.6-fold was achieved upon optimization of the process parameters. The results optimized could be translated to 1-kg tray fermentation. High-performance liquid chromatography (HPLC) analysis and spectral studies such as mass spectroscopy (MS) and (1)H-nuclear magnetic resonance (NMR) confirmed that the bioactive compound isolated was gallic acid. Thus, coffee pulp, which is available in enormous quantity, could be used for the production of value-added products that can find avenues in food, pharmaceutical, and chemical industries.


Asunto(s)
Café/metabolismo , Ácido Gálico/metabolismo , Microbiología Industrial/métodos , Penicillium/metabolismo , Taninos/metabolismo , Biotransformación , Fermentación , Ácido Gálico/química , Ácido Gálico/aislamiento & purificación , Concentración de Iones de Hidrógeno , Modelos Biológicos , Modelos Estadísticos
7.
Plant Direct ; 7(8): e520, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37600239

RESUMEN

Targeted exome-based genotype by sequencing (t-GBS), a sequencing technology that tags SNPs and haplotypes in gene-rich regions was used in previous genome-wide association studies (GWAS) for sodicity tolerance in bread wheat. Thirty-nine novel SNPs including 18 haplotypes for yield and yield-components were identified. The present study aimed at developing SNP-derived markers by precisely locating new SNPs on ~180 bp allelic sequence of t-GBS, marker validation, and SNP functional characterization based on its exonic location. We identified unknown locations of significant SNPs/haplotypes by aligning allelic sequences on to IWGSC RefSeqv1.0 on respective chromosomes. Eighteen out of the target 39 SNP locations fulfilled the criteria for producing PCR markers, among which only eight produced polymorphic signals. These eight markers associated with yield, plants m-2, heads m-2, and harvest index, including a pleiotropic marker for yield, harvest index, and grains/head were validated for its amplification efficiency and phenotypic effects in focused identification germplasm strategy (FIGS) wheat set and a doubled haploid (DH) population (Scepter/IG107116). The phenotypic variation explained by these markers are in the range of 4.1-37.6 in the FIGS population. High throughput PCR-based genotyping using new markers and association with phenotypes in FIGS wheat set and DH population validated the effect of functional SNP on closely associated genes-calcineurin B-like- and dirigent protein, basic helix-loop-helix (BHLH-), plant homeodomain (PHD-) and helix-turn-helix myeloblastosis (HTH myb) type -transcription factor. Further, genome-wide SNP annotation using SnpEff tool confirmed that these SNPs are in gene regulatory regions (upstream, 3'-UTR, and intron) modifying gene expression and protein-coding. This integrated approach of marker design for t-GBS alleles, SNP functional annotation, and high-throughput genotyping of functional SNP offers translation solutions across crops and complex traits in crop improvement programs.

8.
Front Plant Sci ; 11: 573439, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042190

RESUMEN

Tolerance to metribuzin, a broad-spectrum herbicide, is an important trait for weed control in wheat breeding. However, the genetics of metribuzin tolerance in relation to the underlying quantitative trait loci (QTL) and genes is limited. This study developed F8 recombinant inbred lines (RILs) from a cross between a highly resistant genotype (Chuan Mai 25) and highly susceptible genotype (Ritchie), which were used for QTL mapping of metribuzin tolerance. Genotyping was done using a diversity arrays technology sequencing (DArTseq) platform, and phenotyping was done in controlled environments. Herbicide tolerance was measured using three traits, visual score (VS), reduction of chlorophyll content (RCC), and mean value of chlorophyll content for metribuzin-treated plants (MCC). A high-density genetic linkage map was constructed using 2,129 DArTseq markers. Inclusive composite interval mapping (ICIM) identified seven QTL, one each on chromosomes 2A, 2D, 3A, 3B, 4A, 5A, and 6A. Three major QTL-Qrcc.uwa.2AS, Qrcc.uwa.5AL, and Qrcc.uwa.6AL-explained 11.39%, 11.06%, and 11.45% of the phenotypic variation, respectively. The 5A QTL was further validated using kompetitive allele-specific PCR (KASP) assays in an F3 validation population developed from Chuan Mai 25 × Dagger. Blasting the single-nucleotide polymorphisms (SNPs) flanking the QTL in the wheat reference genome RefV1.0 revealed SNP markers within or very close to annotated genes which could be candidate genes responsible for metribuzin tolerance. Most of the candidate genes were related to metabolic detoxification, especially those of P450 pathway and xenobiotic transmembrane transporter activity, which are reportedly key molecules responsible for herbicide tolerance. This study is the first to use specially developed populations to conduct QTL mapping on the metribuzin tolerance trait. The three major QTL and candidate genes identified in this study could facilitate marker-assisted metribuzin breeding in wheat. The QTL could be fine-mapped to locate the genes responsible for metribuzin tolerance, which could be introgressed into elite wheat cultivars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA