Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 15(7): 667-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24859450

RESUMEN

CD4(+) follicular helper T cells (T(FH) cells) are essential for germinal center (GC) responses and long-lived antibody responses. Here we report that naive CD4(+) T cells deficient in the transcription factor Foxp1 'preferentially' differentiated into T(FH) cells, which resulted in substantially enhanced GC and antibody responses. We found that Foxp1 used both constitutive Foxp1A and Foxp1D induced by stimulation of the T cell antigen receptor (TCR) to inhibit the generation of T(FH) cells. Mechanistically, Foxp1 directly and negatively regulated interleukin 21 (IL-21); Foxp1 also dampened expression of the costimulatory molecule ICOS and its downstream signaling at early stages of T cell activation, which rendered Foxp1-deficient CD4(+) T cells partially resistant to blockade of the ICOS ligand (ICOSL) during T(FH) cell development. Our findings demonstrate that Foxp1 is a critical negative regulator of T(FH) cell differentiation.


Asunto(s)
Diferenciación Celular , Factores de Transcripción Forkhead/fisiología , Proteínas Represoras/fisiología , Linfocitos T Colaboradores-Inductores/citología , Animales , Linfocitos T CD4-Positivos/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Interleucinas/genética , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/fisiología
2.
Blood ; 139(1): 59-72, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34411225

RESUMEN

Proteasome inhibitors (PIs) such as bortezomib (Btz) and carfilzomib (Cfz) are highly efficacious for patients with multiple myeloma (MM). However, relapses are frequent, and acquired resistance to PI treatment emerges in most patients. Here, we performed a high-throughput screen of 1855 Food and Drug Administration (FDA)-approved drugs and identified all-trans retinoic acid (ATRA), which alone has no antimyeloma effect, as a potent drug that enhanced MM sensitivity to Cfz-induced cytotoxicity and resensitized Cfz-resistant MM cells to Cfz in vitro. ATRA activated retinoic acid receptor (RAR)γ and interferon-ß response pathway, leading to upregulated expression of IRF1. IRF1 in turn initiated the transcription of OAS1, which synthesized 2-5A upon binding to double-stranded RNA (dsRNA) induced by Cfz and resulted in cellular RNA degradation by RNase L and cell death. Similar to ATRA, BMS961, a selective RARγ agonist, could also (re)sensitize MM cells to Cfz in vitro, and both ATRA and BMS961 significantly enhanced the therapeutic effects of Cfz in established MM in vivo. In support of these findings, analyses of large datasets of patients' gene profiling showed a strong and positive correlation between RARγ and OAS1 expression and patient's response to PI treatment. Thus, this study highlights the potential for RARγ agonists to sensitize and overcome MM resistance to Cfz treatment in patients.


Asunto(s)
Antineoplásicos/farmacología , Inmunidad Innata/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Oligopéptidos/farmacología , Receptores de Ácido Retinoico/agonistas , 2',5'-Oligoadenilato Sintetasa/inmunología , Línea Celular Tumoral , Endorribonucleasas/inmunología , Humanos , Receptores de Ácido Retinoico/inmunología , Células Tumorales Cultivadas , Receptor de Ácido Retinoico gamma
3.
Blood ; 136(22): 2557-2573, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32582913

RESUMEN

Multiple myeloma (MM) remains largely incurable despite significant advances in biotherapy and chemotherapy. The development of drug resistance is a major problem in MM management. Macrophage migration inhibitory factor (MIF) expression was significantly higher in purified MM cells from relapsed patients than those with sustained response, and MM patients with high MIF had significantly shorter progression-free survival (PFS) and overall survival (OS). MM cell lines also express high levels of MIF, and knocking out MIF made them more sensitive to proteasome inhibitor (PI)-induced apoptosis not observed with other chemotherapy drugs. Mechanistic studies showed that MIF protects MM cells from PI-induced apoptosis by maintaining mitochondrial function via suppression of superoxide production in response to PIs. Specifically, MIF, in the form of a homotrimer, acts as a chaperone for superoxide dismutase 1 (SOD1) to suppress PI-induced SOD1 misfolding and to maintain SOD1 activity. MIF inhibitor 4-iodo-6-phenylpyrimidine and homotrimer disrupter ebselen, which do not kill MM cells, enhanced PI-induced SOD1 misfolding and loss of function, resulting in significantly more cell death in both cell lines and primary MM cells. More importantly, inhibiting MIF activity in vivo displayed synergistic antitumor activity with PIs and resensitized PI-resistant MM cells to treatment. In support of these findings, gene-profiling data showed a significantly negative correlation between MIF and SOD1 expression and response to PI treatment in patients with MM. This study shows that MIF plays a crucial role in MM sensitivity to PIs and suggests that targeting MIF may be a promising strategy to (re)sensitize MM to the treatment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Resistencia a Antineoplásicos , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Mieloma Múltiple , Proteínas de Neoplasias/metabolismo , Inhibidores de Proteasoma/farmacología , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Haematologica ; 106(3): 838-846, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32079700

RESUMEN

Dickkopf-1 (DKK1), broadly expressed by tumor cells from human multiple myeloma (MM) and other cancers but absent from most normal tissues, may be an ideal target for immunotherapy. Our previous studies have shown that DKK1 (peptide)-specific cytotoxic T lymphocytes can effectively lyse primary MM cells in vitro. To develop DKK1-based vaccines that can be easily and inexpensively made and used by all patients, we identified a DKK1 long peptide (LP), DKK13-76-LP, that contains 74 amino acids and epitopes that can potentially bind to all major MHC class I and II molecules. Using HLA-A*0201- and HLA-DR*4-transgenic mouse models, we found that DKK1-specific CD4+ and CD8+ T-cell responses, detected by DKK1 short peptide (P20 and P66v)-HLA-A*0201 tetramer staining and cytotoxic assay for CD8+ T cells or by carboxyfluorescein diacetate succinimidyl ester (CSFE) dilution and IFN-g secretion for CD4+ T cells, respectively, can be induced in vivo by immunizing mice with the DKK13-76-LP. In addition, DKK13-76-LP also induced anti-DKK1 humoral immunity in the transgenic mice and the DKK1 antibodies were functional. Finally, DKK13-76-LP stimulated human blood T cells ex vivo to generate DKK1-specific CD4+ and CD8+ T-cell responses from 8 out of 10 MM patients with different MHC backgrounds. The generated DKK1-specific CD8+ cells efficiently lysed autologous MM cells from these patients. Thus, these results confirm the immunogenicity of the DKK13-76-LP in eliciting DKK1-specific CD4+ and CD8+ T-cell responses in vitro and in vivo, and suggest that the DKK13-76-LP can be used for immunotherapy of MM and other cancers.


Asunto(s)
Mieloma Múltiple , Animales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Humanos , Inmunoterapia , Péptidos y Proteínas de Señalización Intercelular , Ratones , Mieloma Múltiple/terapia , Péptidos , Linfocitos T Citotóxicos
5.
Nat Immunol ; 9(4): 369-77, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18345001

RESUMEN

Toll-like receptor (TLR) signaling is pivotal to innate and adaptive immune responses and must be tightly controlled. The mechanisms of TLR signaling have been the focus of extensive studies. Here we report that the tripartite-motif protein TRIM30alpha, a RING protein, was induced by TLR agonists and interacted with the TAB2-TAB3-TAK1 adaptor-kinase complex involved in the activation of transcription factor NF-kappaB. TRIM30alpha promoted the degradation of TAB2 and TAB3 and inhibited NF-kappaB activation induced by TLR signaling. In vivo studies showed that transfected or transgenic mice overexpressing TRIM30alpha were more resistant to endotoxic shock. Consistent with that, in vivo 'knockdown' of TRIM30alpha mRNA by small interfering RNA impaired lipopolysaccharide-induced tolerance. Finally, expression of TRIM30alpha depended on NF-kappaB activation. Our results collectively indicate that TRIM30alpha negatively regulates TLR-mediated NF-kappaB activation by targeting degradation of TAB2 and TAB3 by a 'feedback' mechanism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , FN-kappa B/metabolismo , Receptores Toll-Like/fisiología , Animales , Línea Celular , Retroalimentación Fisiológica/inmunología , Femenino , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/antagonistas & inhibidores , Receptores Toll-Like/agonistas , Receptores Toll-Like/antagonistas & inhibidores
6.
J Biol Chem ; 290(9): 5797-809, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25583987

RESUMEN

p27Kip1 (p27) is an inhibitor of cyclin-dependent kinases. Inhibiting p27 protein degradation is an actively developing cancer therapy strategy. One focus has been to identify small molecule inhibitors to block recruitment of Thr-187-phosphorylated p27 (p27T187p) to SCF(Skp2/Cks1) ubiquitin ligase. Since phosphorylation of Thr-187 is required for this recruitment, p27T187A knockin (KI) mice were generated to determine the effects of systemically blocking interaction between p27 and Skp2/Cks1 on tumor susceptibility and other proliferation related mouse physiology. Rb1(+/-) mice develop pituitary tumors with full penetrance and the tumors are invariably Rb1(-/-), modeling tumorigenesis by two-hit loss of RB1 in humans. Immunization induced humoral immunity depends on rapid B cell proliferation and clonal selection in germinal centers (GCs) and declines with age in mice and humans. Here, we show that p27T187A KI prevented pituitary tumorigenesis in Rb1(+/-) mice and corrected decline in humoral immunity in older mice following immunization with sheep red blood cells (SRBC). These findings reveal physiological contexts that depend on p27 ubiquitination by SCF(Skp2-Cks1) ubiquitin ligase and therefore help forecast clinical potentials of Skp2/Cks1-p27T187p interaction inhibitors. We further show that GC B cells and T cells use different mechanisms to regulate their p27 protein levels, and propose a T helper cell exhaustion model resembling that of stem cell exhaustion to understand decline in T cell-dependent humoral immunity in older age.


Asunto(s)
Sustitución de Aminoácidos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inmunidad Humoral/genética , Hipófisis/metabolismo , Neoplasias Hipofisarias/genética , Proteína de Retinoblastoma/genética , Factores de Edad , Alanina/genética , Alanina/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Eritrocitos/inmunología , Citometría de Flujo , Técnicas de Sustitución del Gen , Centro Germinal/citología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Humanos , Inmunidad Humoral/inmunología , Inmunohistoquímica , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Hipófisis/patología , Neoplasias Hipofisarias/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ovinos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Treonina/genética , Treonina/metabolismo
7.
J Immunol ; 190(4): 1827-36, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23325890

RESUMEN

After undergoing Ig somatic hypermutation and Ag selection, germinal center (GC) B cells terminally differentiate into either memory or plasma cells (PCs). It is known that the CD40L and IL-21/STAT3 signaling pathways play critical roles in this process, yet it is unclear how the B cell transcription program interprets and integrates these two types of T cell-derived signals. In this study, we characterized the role of STAT3 in the GC-associated PC differentiation using purified human tonsillar GC B cells and a GC B cell-like cell line. When primary GC B cells were cultured under PC differentiation condition, STAT3 inhibition by AG490 prevented the transition from GC centrocytes to preplasmablast, suggesting that STAT3 is required for the initiation of PC development. In a GC B cell-like human B cell line, although IL-21 alone can induce low-level Blimp-1 expression, maximum Blimp-1 upregulation and optimal PC differentiation required both IL-21 and CD40L. CD40L, although having no effect on Blimp-1 as a single agent, greatly augmented the amplitude and duration of IL-21-triggered Jak-STAT3 signaling. In the human PRDM1 locus, CD40L treatment enhanced the ability of STAT3 to upregulate Blimp-1 by removing BCL6, a potent inhibitor of Blimp-1 expression, from a shared BCL6/STAT3 site in intron 3. Thus, IL-21 and CD40L collaborate through at least two distinct mechanisms to synergistically promote Blimp-1 activation and PC differentiation.


Asunto(s)
Adyuvantes Inmunológicos/fisiología , Subgrupos de Linfocitos B/inmunología , Ligando de CD40/fisiología , Diferenciación Celular/inmunología , Interleucinas/fisiología , Células Plasmáticas/inmunología , Proteínas Represoras/biosíntesis , Regulación hacia Arriba/inmunología , Subgrupos de Linfocitos B/enzimología , Subgrupos de Linfocitos B/metabolismo , Línea Celular Tumoral , Humanos , Quinasas Janus/fisiología , Datos de Secuencia Molecular , Técnicas de Cultivo de Órganos , Tonsila Palatina/enzimología , Tonsila Palatina/inmunología , Tonsila Palatina/metabolismo , Células Plasmáticas/enzimología , Células Plasmáticas/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Represoras/fisiología , Factor de Transcripción STAT3/fisiología
8.
Fitoterapia ; 176: 106007, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744384

RESUMEN

Three p-terphenyl metabolites (1-3), three indole-diterpenoids (4-6), an herbicide sesquiterpene (7), a flavonoid (8), and five other small molecules containing nitrogen (9-13) were isolated from the medicinal insect (Periplaneta americana)-derived endophytic Aspergillus taichungensis SMU01. Their chemical structures were elucidated on the basis of spectroscopic data and quantum chemical computational methods. Biological activity of these isolates in the differentiation of mouse CD4+ T cell subsets was evaluated. Importantly, metabolites 2 targeting JAK-STAT signaling pathway could hold potential benefits in maintaining peripheral immune homeostasis and alleviating the progression of autoimmune diseases.


Asunto(s)
Aspergillus , Inmunosupresores , Periplaneta , Animales , Ratones , Estructura Molecular , Aspergillus/química , Inmunosupresores/farmacología , Inmunosupresores/aislamiento & purificación , Periplaneta/microbiología , Linfocitos T CD4-Positivos , Endófitos/química , Diterpenos/farmacología , Diterpenos/aislamiento & purificación , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Transducción de Señal , Ratones Endogámicos C57BL , Femenino
9.
iScience ; 26(8): 107325, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520722

RESUMEN

Macrophages activation is crucial in pathogenesis of rheumatic diseases like ankylosing spondylitis (AS). Circular RNAs (circRNAs)-induced macrophage-associated inflammation participates in many autoimmune diseases but remains elusive in AS. Here, we verified increased expression of circIFNGR2 in peripheral blood mononuclear cells from patients with AS and its expression levels were correlated with the AS severity. In vitro assays revealed that circIFNGR2 enhances macrophage proliferation, and regulates M1/M2 macrophage polarization and NF-κB/Akt pathways. We identified that circIFNGR2 promoted the expression of iNOS/TNFα and M1 polarization, and restrained M2 polarization by sponging miR-939. Additionally, the RNA-binding protein, eIF4A3, was found to enhance the production of circIFNGR2. Interestingly, miR-939 attenuated joint damage in collagen-induced arthritis mice, whereas circIFNGR2 reversed this effect. Our findings highlight the pro-inflammatory roles of eIF4A3-induced circIFNGR2 in AS by modulating macrophage-associated inflammation through miR-939.

10.
Org Lett ; 24(40): 7405-7409, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36153741

RESUMEN

Aspertaichunol A (1), a polyketide with a novel scaffold, was isolated from the medicinal insect (Periplaneta americana)-derived endophytic Aspergillus taichungensis SMU01. Its structure was assigned on the basis of spectroscopic data and quantum chemical computational methods. Notably, 1 possesses an uncommon tricyclo[6.2.0.02,6]decane motif and an unusual bridgehead double bond (anti-Bredt system). A plausible biosynthetic pathway, involving a key intramolecular [2+2] cycloaddition and a reductive cyclization, is postulated. Finally, the immunomodulatory activity of 1 at 20 nM was evaluated by promoting Th9 cell differentiation from naive CD4+CD62L+ T cells.


Asunto(s)
Policétidos , Animales , Aspergillus/química , Vías Biosintéticas , Insectos , Estructura Molecular , Policétidos/farmacología
11.
J Clin Invest ; 132(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192544

RESUMEN

CD8+ T cell longevity regulated by metabolic activity plays important roles in cancer immunotherapy. Although in vitro-polarized, transferred IL-9-secreting CD8+ Tc9 (cytotoxic T lymphocyte subset 9) cells exert greater persistence and antitumor efficacy than Tc1 cells, the underlying mechanism remains unclear. Here, we show that tumor-infiltrating Tc9 cells display significantly lower lipid peroxidation than Tc1 cells in several mouse models, which is strongly correlated with their persistence. Using RNA-sequence and functional validation, we found that Tc9 cells exhibited unique lipid metabolic programs. Tc9 cell-derived IL-9 activated STAT3, upregulated fatty acid oxidation and mitochondrial activity, and rendered Tc9 cells with reduced lipid peroxidation and resistance to tumor- or ROS-induced ferroptosis in the tumor microenvironment. IL-9 signaling deficiency, inhibiting STAT3, or fatty acid oxidation increased lipid peroxidation and ferroptosis of Tc9 cells, resulting in impaired longevity and antitumor ability. Similarly, human Tc9 cells also exhibited lower lipid peroxidation than Tc1 cells and tumor-infiltrating CD8+ T cells expressed lower IL9 and higher lipid peroxidation- and ferroptosis-related genes than circulating CD8+ T cells in patients with melanoma. This study indicates that lipid peroxidation regulates Tc9 cell longevity and antitumor effects via the IL-9/STAT3/fatty acid oxidation pathway and regulating T cell lipid peroxidation can be used to enhance T cell-based immunotherapy in human cancer.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-9 , Animales , Linfocitos T CD8-positivos/metabolismo , Ácidos Grasos/metabolismo , Humanos , Inmunoterapia/métodos , Interleucina-9/genética , Peroxidación de Lípido , Ratones , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
12.
Eur Urol ; 82(5): 543-550, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36050131

RESUMEN

BACKGROUND: Rhabdomyosarcoma (RMS) is the most common paediatric soft-tissue sarcoma. Approximately 15-20% of RMS cases arise from the bladder and prostate (B/P). The optimal treatment strategy for B/P RMS remains unclear. OBJECTIVE: To retrospectively evaluate the applicability of our procedure performed to treat paediatric patients with B/P RMS. DESIGN, SETTING, AND PARTICIPANTS: This is a retrospective analysis from a single tertiary referral hospital. From August 2003 to March 2021, 62 children pathologically diagnosed with B/P RMS underwent radical cystectomy and orthotopic detaenial sigmoid neobladder reconstruction in our centre. SURGICAL PROCEDURE: Surgical procedures included laparoscopic radical cystectomy and detaenial sigmoid neobladder reconstruction, which is demonstrated in the accompanying video. MEASUREMENTS: Demographic, clinical, and follow-up data were collected. Perioperative and long-term oncological and functional outcomes were reported. A logistic regression analysis was also performed. RESULTS AND LIMITATIONS: All surgeries, including three intracorporeal laparoscopic surgeries, were completed successfully. Of the 62 patients, 54 were alive without evidence of disease recurrence or metastasis at the last follow-up. Five of the 14 >12-yr-old boys reported that they experienced erections. Two female patients >12 yr old reported that they menstruated. However, this was a retrospective study conducted at a single centre with limited surgeon experience. CONCLUSIONS: Our results confirmed the safety and feasibility of primary orthotopic sigmoid neobladder reconstruction after radical cystectomy for paediatric patients with B/P RMS. Good outcomes in terms of oncological control and functional recovery were achieved. The high histocompatibility and tissue adaptability of children are inspiring. PATIENT SUMMARY: We describe our stepwise technique of radical cystectomy and detaenial sigmoid neobladder reconstruction for paediatric patients with bladder and prostate rhabdomyosarcoma. With this technique, we were able to achieve good functional recovery without compromising cancer control and significantly increasing complications.


Asunto(s)
Neoplasias de la Próstata , Rabdomiosarcoma , Neoplasias de la Vejiga Urinaria , Derivación Urinaria , Niño , Cistectomía/efectos adversos , Cistectomía/métodos , Estudios de Seguimiento , Humanos , Masculino , Recurrencia Local de Neoplasia/cirugía , Próstata , Neoplasias de la Próstata/cirugía , Estudios Retrospectivos , Rabdomiosarcoma/etiología , Rabdomiosarcoma/cirugía , Resultado del Tratamiento , Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/diagnóstico , Derivación Urinaria/efectos adversos , Derivación Urinaria/métodos
13.
Cell Metab ; 33(5): 1001-1012.e5, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33691090

RESUMEN

Understanding the mechanisms underlying how T cells become dysfunctional in a tumor microenvironment (TME) will greatly benefit cancer immunotherapy. We found that increased CD36 expression in tumor-infiltrating CD8+ T cells, which was induced by TME cholesterol, was associated with tumor progression and poor survival in human and murine cancers. Genetic ablation of Cd36 in effector CD8+ T cells exhibited increased cytotoxic cytokine production and enhanced tumor eradication. CD36 mediated uptake of fatty acids by tumor-infiltrating CD8+ T cells in TME, induced lipid peroxidation and ferroptosis, and led to reduced cytotoxic cytokine production and impaired antitumor ability. Blocking CD36 or inhibiting ferroptosis in CD8+ T cells effectively restored their antitumor activity and, more importantly, possessed greater antitumor efficacy in combination with anti-PD-1 antibodies. This study reveals a new mechanism of CD36 regulating the function of CD8+ effector T cells and therapeutic potential of targeting CD36 or inhibiting ferroptosis to restore T cell function.


Asunto(s)
Antígenos CD36/metabolismo , Linfocitos T CD8-positivos/inmunología , Ferroptosis , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antígenos CD36/antagonistas & inhibidores , Antígenos CD36/genética , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Ácidos Grasos/metabolismo , Ferroptosis/efectos de los fármacos , Humanos , Inmunoterapia , Peroxidación de Lípido , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/mortalidad , Mieloma Múltiple/terapia , Especies Reactivas de Oxígeno/metabolismo , Tasa de Supervivencia , Microambiente Tumoral
14.
Front Cell Dev Biol ; 9: 737599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977002

RESUMEN

Circular RNAs (circRNAs) have emerged as important roles in various inflammatory processes of rheumatic diseases. However, their expression profiles and influences in the pathogenesis of ankylosing spondylitis (AS) remain unclear. In this study, we revealed the differential expression profiles of circRNAs in peripheral blood mononuclear cells (PBMCs) in AS by circRNA sequencing. We screened the differentially expressed circRNAs in AS and verified that hsa_circ_0000652 was upregulated and had potential to be a biomarker of progression. Functionally, hsa_circ_0000652 promoted proliferation and cytokine production in macrophages and inhibited apoptosis. Through dual-luciferase assays and RNA pull-down assays, we demonstrated that hsa_circ_0000652 acted as a competing endogenous RNA (ceRNA) by binding with hsa-miR-1179 and regulated OX40L, which is characterized as a co-stimulatory molecule and found to be upregulated in AS patients. As a result, hsa_circ_0000652 aggravated the inflammation in the coculture system containing CD4+ T cells and macrophages via OX40/OX40L interaction. Our findings suggest that hsa_circ_0000652 was upregulated in AS patients and may serve as a pro-inflammatory factor in macrophages and a positive regulator of OX40/OX40L by sponging hsa-miR-1179.

15.
Biochem Biophys Res Commun ; 391(1): 1093-8, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20004644

RESUMEN

Sinomenine (SIN) is an alkaloid isolated from the Chinese medicinal plant Sinomenium acutum. It is widely used as an immunosuppressive drug for treating autoimmune diseases. Due to its poor efficiency, the large-dose treatment presents some side effects and limits its further applications. In this study, we used chemical modification to improve the therapeutic effect of SIN in vitro and in vivo. A new derivative of sinomenine, named 1032, demonstrates significantly improved immunosuppressive activity over that of its parent natural compound (SIN). In an experimental autoimmune encephalomyelitis (EAE) model, 1032 significantly reduced encephalitogenic T cell responses and induced amelioration of EAE, which outcome was related to its selective inhibitory effect on the production of IL-17. By contrast, SIN treatment only led to a moderate alleviation of EAE severity and the expression level of IL-17 was not significantly reduced. Furthermore, 1032 exhibited suppression of Th17, but not Treg, cell differentiation, a result probably related to its inhibitory effect on IkappaB-alpha degradation as well as on IL-6 and TNF-alpha secretion in BMDCs. We speculate that 1032 as a novel anti-inflammatory agent may target DC to block IL-6 production, which in turn would terminate Th17 cell development. Thus, SIN derivative 1032 presents considerable potential in new drug development for treating autoimmune and inflammatory disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Morfinanos/uso terapéutico , Linfocitos T/efectos de los fármacos , Animales , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Proteínas I-kappa B/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Morfinanos/química , Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología
16.
Cancer Res ; 80(7): 1438-1450, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32015091

RESUMEN

Tumor-associated macrophages (TAM) are important tumor-promoting cells. However, the mechanisms underlying how the tumor and its microenvironment reprogram these cells remain elusive. Here we report that lipids play a crucial role in generating TAMs in the tumor microenvironment (TME). Macrophages from both human and murine tumor tissues were enriched with lipids due to increased lipid uptake by macrophages. TAMs expressed elevated levels of the scavenger receptor CD36, accumulated lipids, and used fatty acid oxidation (FAO) instead of glycolysis for energy. High levels of FAO promoted mitochondrial oxidative phosphorylation, production of reactive oxygen species, phosphorylation of JAK1, and dephosphorylation of SHP1, leading to STAT6 activation and transcription of genes that regulate TAM generation and function. These processes were critical for TAM polarization and activity, both in vitro and in vivo. In summary, we highlight the importance of lipid metabolism in the differentiation and function of protumor TAMs in the TME. SIGNIFICANCE: This study highlights the role of lipid metabolism in the differentiation and function of TAMs and suggests targeting TAM fatty acid oxidation as a potential therapeutic modality for human cancers.


Asunto(s)
Diferenciación Celular/inmunología , Metabolismo de los Lípidos/inmunología , Macrófagos/inmunología , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Animales , Línea Celular Tumoral/trasplante , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Femenino , Humanos , Macrófagos/metabolismo , Masculino , Ratones , Mitocondrias/metabolismo , Neoplasias/patología , Oxidación-Reducción , Fosforilación Oxidativa , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo
17.
Nat Commun ; 11(1): 5902, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214555

RESUMEN

CAR-T cell therapy is effective for hematologic malignancies. However, considerable numbers of patients relapse after the treatment, partially due to poor expansion and limited persistence of CAR-T cells in vivo. Here, we demonstrate that human CAR-T cells polarized and expanded under a Th9-culture condition (T9 CAR-T) have an enhanced antitumor activity against established tumors. Compared to IL2-polarized (T1) cells, T9 CAR-T cells secrete IL9 but little IFN-γ, express central memory phenotype and lower levels of exhaustion markers, and display robust proliferative capacity. Consequently, T9 CAR-T cells mediate a greater antitumor activity than T1 CAR-T cells against established hematologic and solid tumors in vivo. After transfer, T9 CAR-T cells migrate effectively to tumors, differentiate to IFN-γ and granzyme-B secreting effector memory T cells but remain as long-lived and hyperproliferative T cells. Our findings are important for the improvement of CAR-T cell-based immunotherapy for human cancers.


Asunto(s)
Citotoxicidad Inmunológica , Inmunoterapia Adoptiva/métodos , Interleucina-9/metabolismo , Linfocitos T/inmunología , Animales , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Citocinas/metabolismo , Humanos , Memoria Inmunológica , Interferón gamma/metabolismo , Ratones , Fenotipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Linfocitos T/trasplante , Células TH1/citología , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/trasplante , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Immunother Cancer ; 7(1): 28, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30717817

RESUMEN

Tumor specific Th9 cells are potential effector cells for adoptive therapy of human cancers. TNF family members OX40L, TL1A and GITRL have been shown to promote the induction of Th9 cells and antitumor immunity. However, the role of TNF-α, the prototype of the TNF superfamily cytokines, in Th9 cell differentiation and their antitumor efficacy is not defined. Here, we showed that TNF-α potently promoted naïve CD4+ T cells to differentiate into Th9 cells in vitro. Furthermore, the addition of TNF-α during Th9 cell differentiation increased T cell survival and proliferation. More importantly, the adoptive transfer of TNF-α-treated Th9 cells induced more potent antitumor effects than regular Th9 cells in mouse tumor model. TNF-α signals via two cell surface receptors, TNFR1 and TNFR2. Mechanistic studies revealed that TNF-α drove Th9 cell differentiation through TNFR2 but not TNFR1. In addition, under Th9 polarizing condition, TNF-α activated STAT5 and NF-κB pathways in T cells in a TNFR2-dependent manner. Inhibition of STAT5 and NF-κB pathways by their specific inhibitors impaired TNF-α-induced Th9 cell differentiation. Our results identified TNF-α as a new powerful inducer of Th9 cells and clarified the molecular mechanisms underlying TNF-α-induced Th9 cell differentiation.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Diferenciación Celular , Neoplasias/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , Inmunidad , Ratones Noqueados , FN-kappa B/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/genética
20.
Cell Metab ; 30(1): 143-156.e5, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31031094

RESUMEN

Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8+ T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8+ T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8+ T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8+ T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Colesterol/sangre , Microambiente Tumoral/fisiología , Animales , Western Blotting , Citometría de Flujo , Humanos , Inmunoprecipitación , Inmunoterapia , Melanoma Experimental/sangre , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA