RESUMEN
The water contaminations with organophosphate triesters (tri-OPEs) and diesters (di-OPEs) have recently provoked concern. However, the distributions of these compounds in natural water sources and artificial water treatment facilities are poorly characterized. A comprehensive study was therefore performed to measure their concentrations in a water source, a long-distance water pipeline, and a drinking water treatment plant (DWTP). Eight tri-OPEs and 3 di-OPEs were found to be widely distributed, with total concentrations in source water and pipelines ranging from 290.6 to 843.9 ng/L. The most abundant pollutants were tris(1-chloro-2-propyl) phosphate (TCPP), triethyl phosphate, tri-n-butyl phosphate (TnBP), and diphenyl phosphate (DPhP). Di-OPEs appeared to be removed less efficiently in the DWTP than the parent tri-OPEs, and the elimination efficiencies of tri-OPEs were structure-dependent. Long-distance pipeline transportation had no significant effect on the distributions of tri- and di-OPEs. Statistical analysis suggested that the sources of di-OPEs and the corresponding tri-OPEs differed, as did those of DPhP and di-n-butyl phosphate. A risk analysis indicated that tri-OPEs present limited ecological risks that are mainly due to TnBP and TCPP, and that the human health risks of tri-OPEs are negligible. However, di-OPEs (especially DPhP) may increase these risks. Further studies on the risks posed by di-OPEs in aquatic environments are therefore needed.
Asunto(s)
Agua Potable , Retardadores de Llama , Humanos , Agua Potable/análisis , Retardadores de Llama/análisis , Monitoreo del Ambiente , Ésteres/análisis , Organofosfatos/análisis , China , Fosfatos/análisis , Abastecimiento de AguaRESUMEN
With the continuous reduction of chip size, fluxless soldering has brought attention to high-density, three-dimensional packaging. Although fluxless soldering technology with formic acid (FA) atmosphere has been presented, few studies have examined the effect of the Pt catalytic, preheating time, and soldering pad on FA soldering for the Sn-58Bi solder. The results have shown that the Pt catalytic can promote oxidation-reduction and the formation of a large pore in the Sn-58Bi/Cu solder joint, which causes a decrease in shear strength. ENIG (electroless nickel immersion gold) improves soldering strength. The shear strength of Sn-58Bi/ENIG increases under the Pt catalytic FA atmosphere process due to the isolation of the Au layer on ENIG. The Au layer protects metal from corrosion and provides a good contact surface for the Sn-58Bi solder. The shear strength of the Sn-58Bi/ENIG joints under a Pt catalytic atmosphere improved by 44.7% compared to using a Cu pad. These findings reveal the improvement of the shear strength of solder joints bonded at low temperatures under the FA atmosphere.
RESUMEN
Persistent halogenated organic pollutants (HOPs) are a class of toxic chemicals, which may have adverse effects on fetuses via transplacental transfer from their mothers. Here, we review reported internal exposure levels of various HOPs (organochlorinated pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, short- and medium-chain chlorinated paraffins, and per- and poly-fluoroalkyl substances) in placenta, and both maternal and umbilical cord sera. We also present analyses of the transplacental transfer and placental distribution characteristics of each class of compounds, and discuss effects of several factors on the transfer and accumulation efficiencies of HOPs, as well as the main mechanisms of HOPs' transfer across the placental barrier. Reported compound-specific transplacental transfer efficiencies and distribution efficiencies, expressed as umbilical cord:maternal serum and placental:maternal serum concentration ratios (RCM and RPM, respectively), are summarized. Average published RCM values of the HOPs range from 0.24 to 3.08 (lipid-adjusted) and from 0.04 to 3.1 (based on wet weights), and are highest for perfluoroalkylcarboxylates (PFCAs) and tetrabromobisphenol A. Average published RPM values range from 0.14 to 1.02 (lipid-adjusted) and from 0.30 to 1.4 (based on wet weights). The broad RCM and RPM ranges may reflect effects of various factors, inter alia physicochemical properties of HOPs, metabolic capacities of mothers and fetuses, placental maturity, and differential expression of influx/efflux transporters in the placenta. Generally, HOPs' RCM values decline linearly with molecular size, and are curvilinearly related to solubility. Plasma protein binding affinity and the difference between maternal and fetal metabolic capacities may also affect some HOPs' transfer efficiencies. HOPs' molecular size may be influential. Transplacental transport of HOPs likely occurs mostly through passive diffusion, although influx/efflux transporters expressed on maternal and/or fetal sides of the placenta may also facilitate or hinder their transport. Overall, the review highlights clear gaps in our understanding of mechanisms involved in HOPs' transplacental transport.