Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neurobiol Dis ; 178: 106006, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682503

RESUMEN

Many fundamental questions on alcohol use disorder (AUD) are frequently difficult to address by examining a single brain structure, but should be viewed from the whole brain perspective. c-Fos is a marker of neuronal activation. Global brain c-Fos profiling in rodents represents a promising platform to study brain functional networks rearrangements in AUD. We used a mouse model of alcohol drinking in IntelliCage. We trained mice to voluntarily drink alcohol, next subjected them to withdrawal and alcohol reexposure. We have developed a dedicated image computational workflow to identify c-Fos-positive cells in three-dimensional images obtained after whole-brain optical clearing and imaging in the light-sheet microscope. We provide a complete list of 169 brain structures with annotated c-Fos expression. We analyzed functional networks, brain modularity and engram index. Brain c-Fos levels in animals reexposed to alcohol were different from both control and binge drinking animals. Structures involved in reward processing, decision making and characteristic for addictive behaviors, such as precommissural nucleus, nucleus Raphe, parts of colliculus and tecta stood out particularly. Alcohol reexposure leads to a massive change of brain modularity including a formation of numerous smaller functional modules grouping structures involved in addiction development. Binge drinking can lead to substantial functional remodeling in the brain. We provide a list of structures that can be used as a target in pharmacotherapy but also point to the networks and modules that can hold therapeutic potential demonstrated by a clinical trial in patients.


Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Ratones , Animales , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Encéfalo/metabolismo , Etanol , Consumo de Bebidas Alcohólicas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
2.
J Neurosci ; 40(41): 7980-7994, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32887745

RESUMEN

SYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. De novo loss-of-function variants in this gene cause a neurodevelopmental disorder defined by cognitive impairment, social-communication disorder, and early-onset seizures. Cell biological studies in mouse and rat neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, with loss-of-function variants driving formation of larger dendritic spines and stronger glutamatergic transmission. However, studies to date have been limited to mouse and rat neurons. Therefore, it remains unknown how SYNGAP1 loss of function impacts the development and function of human neurons. To address this, we used CRISPR/Cas9 technology to ablate SYNGAP1 protein expression in neurons derived from a commercially available induced pluripotent stem cell line (hiPSC) obtained from a human female donor. Reducing SynGAP protein expression in developing hiPSC-derived neurons enhanced dendritic morphogenesis, leading to larger neurons compared with those derived from isogenic controls. Consistent with larger dendritic fields, we also observed a greater number of morphologically defined excitatory synapses in cultures containing these neurons. Moreover, neurons with reduced SynGAP protein had stronger excitatory synapses and expressed synaptic activity earlier in development. Finally, distributed network spiking activity appeared earlier, was substantially elevated, and exhibited greater bursting behavior in SYNGAP1 null neurons. We conclude that SYNGAP1 regulates the postmitotic maturation of human neurons made from hiPSCs, which influences how activity develops within nascent neural networks. Alterations to this fundamental neurodevelopmental process may contribute to the etiology of SYNGAP1-related disorders.SIGNIFICANCE STATEMENTSYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. While this gene is well studied in rodent neurons, its function in human neurons remains unknown. We used CRISPR/Cas9 technology to disrupt SYNGAP1 protein expression in neurons derived from an induced pluripotent stem cell line. We found that induced neurons lacking SynGAP expression exhibited accelerated dendritic morphogenesis, increased accumulation of postsynaptic markers, early expression of synapse activity, enhanced excitatory synaptic strength, and early onset of neural network activity. We conclude that SYNGAP1 regulates the postmitotic differentiation rate of developing human neurons and disrupting this process impacts the function of nascent neural networks. These altered developmental processes may contribute to the etiology of SYNGAP1 disorders.


Asunto(s)
Dendritas/fisiología , Red Nerviosa/fisiología , Sistema Nervioso/crecimiento & desarrollo , Sinapsis/fisiología , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/fisiología , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Tamaño de la Célula , Células Cultivadas , Potenciales Postsinápticos Excitadores/genética , Femenino , Eliminación de Gen , Humanos , Trastornos del Neurodesarrollo/genética , Células Madre Pluripotentes
3.
Postepy Biochem ; 67(2): 141-156, 2021 06 30.
Artículo en Polaco | MEDLINE | ID: mdl-34378894

RESUMEN

The article describes different groups of psychoactive substances, which are chemical compounds that alter perception. Based on their main effect on the psyche they were classified into four subclasses: stimulants, empathogens, hallucinogens and depressants., Molecular mechanisms of action of different drugs of abuse were described, together with their social and economic issues in Poland and Europe.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Alucinógenos , Europa (Continente) , Alucinógenos/farmacología , Humanos , Polonia
4.
Neurobiol Dis ; 130: 104499, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31176717

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is a hallmark of some neurodegenerative disorders, such as frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43-related pathology is characterized by its abnormally phosphorylated and ubiquitinated aggregates. It is involved in many aspects of RNA processing, including mRNA splicing, transport, and translation. However, its exact physiological function and role in mechanisms that lead to neuronal degeneration remain elusive. Transgenic rats that were characterized by TDP-43 depletion in neurons exhibited enhancement of the acquisition of fear memory. At the cellular level, TDP-43-depleted neurons exhibited a decrease in the short-term plasticity of intrinsic neuronal excitability. The induction of long-term potentiation in the CA3-CA1 areas of the hippocampus resulted in more stable synaptic enhancement. At the molecular level, the protein levels of an unedited (R) FLOP variant of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluR1 and GluR2/3 subunits decreased in the hippocampus. Alterations of FLOP/FLIP subunit composition affected AMPAR kinetics, reflected by cyclothiazide-dependent slowing of the decay time of AMPAR-mediated miniature excitatory postsynaptic currents. These findings suggest that TDP-43 may regulate activity-dependent neuronal plasticity, possibly by regulating the splicing of genes that are responsible for fast synaptic transmission and membrane potential.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hipocampo/metabolismo , Memoria/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Animales , Proteínas de Unión al ADN/genética , Espinas Dendríticas/metabolismo , Ratas , Ratas Transgénicas , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología
5.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871021

RESUMEN

It is believed that postponing ageing is more effective and less expensive than the treatment of particular age-related diseases. Compounds which could delay symptoms of ageing, especially natural products present in a daily diet, are intensively studied. One of them is curcumin. It causes the elongation of the lifespan of model organisms, alleviates ageing symptoms and postpones the progression of age-related diseases in which cellular senescence is directly involved. It has been demonstrated that the elimination of senescent cells significantly improves the quality of life of mice. There is a continuous search for compounds, named senolytic drugs, that selectively eliminate senescent cells from organisms. In this paper, we endeavor to review the current knowledge about the anti-ageing role of curcumin and discuss its senolytic potential.


Asunto(s)
Envejecimiento/efectos de los fármacos , Curcumina/farmacología , Curcumina/uso terapéutico , Animales , Senescencia Celular/efectos de los fármacos , Humanos , Longevidad/efectos de los fármacos , Calidad de Vida
7.
Cell Rep ; 42(9): 113036, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37616162

RESUMEN

The central amygdala (CeA) with its medial (CeM) and lateral (CeL) nuclei is the brain hub for processing stimuli with emotional context. CeL nucleus gives a strong inhibitory input to the CeM, and this local circuitry assigns values (positive or negative) to incoming stimuli, guiding appropriate behavior (approach or avoid). However, the particular involvement of CeA in processing such emotionally relevant information and adaptations of the CeA circuitry are not yet well understood. In this study, we examined synaptic plasticity in the CeA after exposure to two types of rewards, pharmacological (cocaine) and natural (sugar). We found that both rewards engage CeM, where they generate silent synapses resulting in the strengthening of the network. However, only cocaine triggers plasticity in the CeL, which leads to the weakening of its excitatory inputs. Finally, chemogenetic inhibition of CeM attenuates animal preference for sugar, while activation delays cocaine-induced increase in locomotor activity.

8.
Transl Psychiatry ; 13(1): 20, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36683039

RESUMEN

Natural rewards, such as food, and sex are appetitive stimuli available for animals in their natural environment. Similarly, addictive rewards such as drugs of abuse possess strong, positive valence, but their action relies on their pharmacological properties. Nevertheless, it is believed that both of these kinds of rewards activate similar brain circuitry. The present study aimed to discover which parts of the brain process the experience of natural and addictive rewards. To holistically address this question, we used a single-cell whole-brain imaging approach to find patterns of activation for acute and prolonged sucrose and cocaine exposure. We analyzed almost 400 brain structures and created a brain-wide map of specific, c-Fos-positive neurons engaged by these rewards. Acute but not prolonged sucrose exposure triggered a massive c-Fos expression throughout the brain. Cocaine exposure on the other hand potentiated c-Fos expression with prolonged use, engaging more structures than sucrose treatment. The functional connectivity analysis unraveled an increase in brain modularity after the initial exposure to both types of rewards. This modularity was increased after repeated cocaine, but not sucrose, intake. To check whether discrepancies between the processing of both types of rewards can be found on a cellular level, we further studied the nucleus accumbens, one of the most strongly activated brain structures by both sucrose and cocaine experience. We found a high overlap between natural and addictive rewards on the level of c-Fos expression. Electrophysiological measurements of cellular correlates of synaptic plasticity revealed that natural and addictive rewards alike induce the accumulation of silent synapses. These results strengthen the hypothesis that in the nucleus accumbens drugs of abuse cause maladaptive neuronal plasticity in the circuitry that typically processes natural rewards.


Asunto(s)
Cocaína , Animales , Cocaína/farmacología , Azúcares/metabolismo , Núcleo Accumbens/metabolismo , Recompensa , Neuronas/metabolismo , Sacarosa/metabolismo , Sacarosa/farmacología
9.
ACS Appl Mater Interfaces ; 15(10): 12831-12841, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36880640

RESUMEN

Here, we provide experimental verification supporting the use of short-section imaging bundles for two-photon microscopy imaging of the mouse brain. The 8 mm long bundle is made of a pair of heavy-metal oxide glasses with a refractive index contrast of 0.38 to ensure a high numerical aperture NA = 1.15. The bundle is composed of 825 multimode cores, ordered in a hexagonal lattice with a pixel size of 14 µm and a total diameter of 914 µm. We demonstrate successful imaging through custom-made bundles with 14 µm resolution. As the input, we used a 910 nm Ti-sapphire laser with 140 fs pulse and a peak power of 9 × 104 W. The excitation beam and fluorescent image were transferred through the fiber imaging bundle. As test samples, we used 1 µm green fluorescent latex beads, ex vivo hippocampal neurons expressing green fluorescent protein and cortical neurons in vivo expressing the fluorescent reporter GCaMP6s or immediate early gene Fos fluorescent reporter. This system can be used for minimal-invasive in vivo imaging of the cerebral cortex, hippocampus, or deep brain areas as a part of a tabletop system or an implantable setup. It is a low-cost solution, easy to integrate and operate for high-throughput experiments.


Asunto(s)
Corteza Cerebral , Colorantes , Ratones , Animales , Microscopía Fluorescente/métodos , Encéfalo/diagnóstico por imagen , Neuroimagen
10.
Cells ; 11(18)2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36139418

RESUMEN

For many years optimal treatment for dysfunctional skeletal muscle characterized, for example, by impaired or limited regeneration, has been searched. Among the crucial factors enabling its development is finding the appropriate source of cells, which could participate in tissue reconstruction or serve as an immunomodulating agent (limiting immune response as well as fibrosis, that is, connective tissue formation), after transplantation to regenerating muscles. MSCs, including those derived from bone marrow, are considered for such applications in terms of their immunomodulatory properties, as their naive myogenic potential is rather limited. Injection of autologous (syngeneic) or allogeneic BMSCs has been or is currently being tested and compared in many potential clinical treatments. In the present study, we verified which approach, that is, the transplantation of either syngeneic or allogeneic BMSCs or the injection of BMSC-conditioned medium, would be the most beneficial for skeletal muscle regeneration. To properly assess the influence of the tested treatments on the inflammation, the experiments were carried out using immunocompetent mice, which allowed us to observe immune response. Combined analysis of muscle histology, immune cell infiltration, and levels of selected chemokines, cytokines, and growth factors important for muscle regeneration, showed that muscle injection with BMSC-conditioned medium is the most beneficial strategy, as it resulted in reduced inflammation and fibrosis development, together with enhanced new fiber formation, which may be related to, i.e., elevated level of IGF-1. In contrast, transplantation of allogeneic BMSCs to injured muscles resulted in a visible increase in the immune response, which hindered regeneration by promoting connective tissue formation. In comparison, syngeneic BMSC injection, although not detrimental to muscle regeneration, did not result in such significant improvement as CM injection.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Animales , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Citocinas/metabolismo , Fibrosis , Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Músculo Esquelético
11.
Acta Histochem ; 123(5): 151751, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34229193

RESUMEN

Adropin (ADR) plays a role in metabolism regulation and its alterations in obesity and diabetes have been found. Treatment with ADR was beneficial in metabolic diseases, and physical exercise increased ADR concentrations in obese patients. However, data on the distribution of ADR in the brain are sparse. The role of metabolic status and physical exercise on its expression in the brain is undiscovered. We hypothesized that diabetes type 2 (DM2) and/or exercise will alter number of ADR-immunoractive (-ir) cells in the rat brain. Animals were divided into groups: diabetes type 2 (receiving high-fat diet and injections of streptozotocin) and control (fed laboratory chow diet; C). Rats were further divided into: running group (2 weeks of forced exercise on a treadmill) and non-running group. Body mass, metabolic and hormonal profiles were assessed. Immunohistochemistry was run to study ADR-ir cells in the brain. We found that: 1) in DM2 animals, running decreased insulin and increased glucose concentrations; 2) in C rats, running decreased insulin concentrations and had no effect on glucose concentration in blood; 3) running increased corticosterone (CORT) concentrations in DM2 and C rats; 4) ADR-ir cells were detected in the hippocampus and ADR-ir fibers in the arcuate nucleus of the hypothalamus, which is a novel location; 5) metabolic status and running, however, did not change number of these cells. We concluded that 2 weeks of forced moderate intensity locomotor training induced stress response present as increased concentration of CORT and did not influence number of ADR-ir cells in the brain.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Corticosterona/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipocampo/metabolismo , Movimiento , Péptidos/metabolismo , Condicionamiento Físico Animal , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal , Encéfalo/metabolismo , Diabetes Mellitus Experimental , Glucosa/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Masculino , Perfusión , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA