Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Antimicrob Agents Chemother ; 66(3): e0220321, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35041509

RESUMEN

Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MICCAZ, 0.5 mg/liter; MICTOB, 2 mg/liter) and CW8 (MICCAZ, 2 mg/liter; MICTOB, 8 mg/liter), were investigated for 120 h in dynamic in vitro biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log10 CFU/ml) and biofilm (>3.8 log10 CFU/cm2) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Tobramicina/farmacología , Tobramicina/uso terapéutico
2.
J Antimicrob Chemother ; 77(3): 704-710, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35037934

RESUMEN

OBJECTIVES: To determine the therapeutic target of vancomycin in young infants with staphylococcal infections. METHODS: Retrospective data were collected for infants aged 0 to 90 days with CoNS or MRSA bacteraemia over a 4 year period at the Royal Children's Hospital Melbourne, Australia. Vancomycin broth microdilution MICs were determined. A published pharmacokinetic model was externally validated using the study dataset and a time-to-event (TTE) pharmacodynamic model developed to link the AUC of vancomycin with the event being the first negative blood culture. Simulations were performed to determine the trough vancomycin concentration that correlates with a 90% PTA of the target AUC24. RESULTS: Thirty infants, 28 with CoNS and 2 with MRSA bacteraemia, who had 165 vancomycin concentrations determined were included. The vancomycin broth microdilution MIC was determined for 24 CoNS and 1 MRSA isolate, both with a median MIC of 1 mg/L (CoNS range = 0.5-4.0). An AUC0-24 target of ≥300 mg/L·h or AUC24-48 of ≥424 mg/L·h. increased the chance of bacteriological cure by 7.8- and 7.3-fold, respectively. However, AUC0-24 performed best in the pharmacokinetic-pharmacodynamic model. This correlates with 24 to 48 h trough concentrations of >15-18 mg/L and >10-15 mg/L for 6- and 12-hourly dosing, respectively, and can be used to guide vancomycin therapy in this population. CONCLUSIONS: An AUC0-24 ≥300 mg/L·h or AUC24-48 ≥424 mg/L·h was associated with an increase in bacteriological cure in young infants with staphylococcal bloodstream infections.


Asunto(s)
Infecciones Estafilocócicas , Vancomicina , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/farmacocinética , Antibacterianos/uso terapéutico , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , Estudios Retrospectivos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus , Vancomicina/farmacocinética , Vancomicina/uso terapéutico , Adulto Joven
3.
Artículo en Inglés | MEDLINE | ID: mdl-32366710

RESUMEN

Treatment of exacerbations of chronic Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF) is highly challenging due to hypermutability, biofilm formation, and an increased risk of resistance emergence. We evaluated the impact of ciprofloxacin and meropenem as monotherapy and in combination in the dynamic in vitro CDC biofilm reactor (CBR). Two hypermutable P. aeruginosa strains, PAOΔmutS (MIC of ciprofloxacin [MICciprofloxacin], 0.25 mg/liter; MICmeropenem, 2 mg/liter) and CW44 (MICciprofloxacin, 0.5 mg/liter; MICmeropenem, 4 mg/liter), were investigated for 120 h. Concentration-time profiles achievable in epithelial lining fluid (ELF) following FDA-approved doses were simulated in the CBR. Treatments were ciprofloxacin at 0.4 g every 8 h as 1-h infusions (80% ELF penetration), meropenem at 6 g/day as a continuous infusion (CI) (30% and 60% ELF penetration), and their combinations. Counts of total and less-susceptible planktonic and biofilm bacteria and MICs were determined. Antibiotic concentrations were quantified by an ultrahigh-performance liquid chromatography photodiode array (UHPLC-PDA) assay. For both strains, all monotherapies failed, with substantial regrowth and resistance of planktonic (≥8 log10 CFU/ml) and biofilm (>8 log10 CFU/cm2) bacteria at 120 h (MICciprofloxacin, up to 8 mg/liter; MICmeropenem, up to 64 mg/liter). Both combination treatments demonstrated synergistic bacterial killing of planktonic and biofilm bacteria of both strains from ∼48 h onwards and suppressed regrowth to ≤4 log10 CFU/ml and ≤6 log10 CFU/cm2 at 120 h. Overall, both combination treatments suppressed the amplification of resistance of planktonic bacteria for both strains and of biofilm bacteria for CW44. The combination with meropenem at 60% ELF penetration also suppressed the amplification of resistance of biofilm bacteria for PAOΔmutS Thus, combination treatment demonstrated synergistic bacterial killing and resistance suppression against difficult-to-treat hypermutable P. aeruginosa strains.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Ciprofloxacina/farmacología , Humanos , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico
4.
Small ; 16(21): e1906674, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31984626

RESUMEN

Multidrug resistance of bacteria is a major challenge due to the wide-spread use of antibiotics. While a range of strategies have been developed in recent years, suppression of bacterial activity and virulence via their network of extracellular amyloid has rarely been explored, especially with nanomaterials. Here, silver nanoparticles and nanoclusters (AgNPs and AgNCs) capped with cationic branched polyethylenimine polymer are synthesized, and their antimicrobial potentials are determined at concentrations safe to mammalian cells. Compared with the ultrasmall AgNCs, AgNPs entail stronger binding to suppress the fibrillization of FapC, a major protein constituent of the extracellular amyloid matrix of Pseudomonas aeruginosa. Both types of nanoparticles exhibit concentration-dependent antibiofilm and antimicrobial properties against P. aeruginosa. At concentrations of 1 × 10-6 m or below, both the bactericidal activity of AgNCs and the antibiofilm capacity of AgNPs are associated with their structure-mediated bio-nano interactions but not ion release. For AgNPs, specifically, their antibiofilm potency correlates with their capacity of FapC fibrillization inhibition, but not with their bactericidal activity. This study demonstrates the antimicrobial potential of safe nanotechnology through the novel route of amyloidosis inhibition.


Asunto(s)
Amiloide , Proteínas Bacterianas , Biopelículas , Nanopartículas del Metal , Pseudomonas aeruginosa , Plata , Amiloide/efectos de los fármacos , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Unión Proteica/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Plata/química , Plata/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-31427301

RESUMEN

Exacerbations of chronic Pseudomonas aeruginosa infections are a major treatment challenge in cystic fibrosis due to biofilm formation and hypermutation. We aimed to evaluate different dosage regimens of meropenem and tobramycin as monotherapies and in combination against hypermutable carbapenem-resistant P. aeruginosa A hypermutable P. aeruginosa isolate (meropenem and tobramycin MICs, 8 mg/liter) was investigated in the dynamic CDC biofilm reactor over 120 h. Regimens were meropenem as the standard (2 g every 8 h, 30% epithelial lining fluid [ELF] penetration) and as a continuous infusion (CI; 6 g/day, 30% and 60% ELF penetration) and tobramycin at 10 mg/kg of body weight every 24 h (50% ELF penetration). The time courses of totally susceptible and less-susceptible bacteria and MICs were determined, and antibiotic concentrations were quantified by liquid chromatography-tandem mass spectrometry. All monotherapies failed, with the substantial regrowth of planktonic (>6 log10 CFU/ml) and biofilm (≥6 log10 CFU/cm2) bacteria occurring. Except for the meropenem CI (60% ELF penetration), all monotherapies amplified less-susceptible planktonic and biofilm bacteria by 120 h. The meropenem standard regimen with tobramycin caused initial killing followed by considerable regrowth with resistance (meropenem MIC, 64 mg/liter; tobramycin MIC, 32 mg/liter) for planktonic and biofilm bacteria. The combination containing the meropenem CI at both levels of ELF penetration synergistically suppressed the regrowth of total planktonic bacteria and the resistance of planktonic and biofilm bacteria. The combination with the meropenem CI at 60% ELF penetration, in addition, synergistically suppressed the regrowth of total biofilm bacteria. Standard regimens of meropenem and tobramycin were ineffective against planktonic and biofilm bacteria. The combination with meropenem CI exhibited enhanced bacterial killing and resistance suppression of carbapenem-resistant hypermutable P. aeruginosa.


Asunto(s)
Biopelículas/efectos de los fármacos , Meropenem/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Tobramicina/uso terapéutico , Antibacterianos/uso terapéutico , Quimioterapia Combinada/métodos , Humanos , Pruebas de Sensibilidad Microbiana/métodos
6.
J Antimicrob Chemother ; 73(6): 1570-1578, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29506207

RESUMEN

Objectives: To identify the fosfomycin pharmacokinetic (PK)/pharmacodynamic (PD) index (fT>MIC, fAUC/MIC or fCmax/MIC) most closely correlated with activity against Pseudomonas aeruginosa and determine the PK/PD target associated with various extents of bacterial killing and the prevention of emergence of resistance. Methods: Dose fractionation was conducted over 24 h in a dynamic one-compartment in vitro PK/PD model utilizing P. aeruginosa ATCC 27853 and two MDR clinical isolates (CR 1005 and CW 7). In total, 35 different dosing regimens were examined across the three strains. Microbiological response was examined by log changes and population analysis profiles. A Hill-type Emax model was fitted to the killing effect data (expressed as the log10 ratio of the area under the cfu/mL curve for treated regimens versus controls). Results: Bacterial killing of no more than ∼3 log10 cfu/mL was achieved irrespective of regimen. The fAUC/MIC was the PK/PD index most closely correlated with efficacy (R2 = 0.80). The fAUC/MIC targets required to achieve 1 and 2 log10 reductions in the area under the cfu/mL curve relative to growth control were 489 and 1024, respectively. No regimen was able to suppress the emergence of resistance, and near-complete replacement of susceptible with resistant subpopulations occurred with virtually all regimens. Conclusions: Bacterial killing for fosfomycin against P. aeruginosa was most closely associated with the fAUC/MIC. Suppression of fosfomycin-resistant subpopulations could not be achieved even with fosfomycin exposures well above those that can be safely achieved clinically.


Asunto(s)
Antibacterianos/farmacocinética , Técnicas de Cultivo de Célula , Fosfomicina/farmacocinética , Pseudomonas aeruginosa/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Teóricos
7.
Antibiotics (Basel) ; 11(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35052977

RESUMEN

We evaluated piperacillin-tazobactam and tobramycin regimens against Pseudomonas aeruginosa isolates from critically ill patients. Static-concentration time-kill studies (SCTK) assessed piperacillin-tazobactam and tobramycin monotherapies and combinations against four isolates over 72 h. A 120 h-dynamic in vitro infection model (IVM) investigated isolates Pa1281 (MICpiperacillin 4 mg/L, MICtobramycin 0.5 mg/L) and CR380 (MICpiperacillin 32 mg/L, MICtobramycin 1 mg/L), simulating the pharmacokinetics of: (A) tobramycin 7 mg/kg q24 h (0.5 h-infusions, t1/2 = 3.1 h); (B) piperacillin 4 g q4 h (0.5 h-infusions, t1/2 = 1.5 h); (C) piperacillin 24 g/day, continuous infusion; A + B; A + C. Total and less-susceptible bacteria were determined. SCTK demonstrated synergy of the combination for all isolates. In the IVM, regimens A and B provided initial killing, followed by extensive regrowth by 72 h for both isolates. C provided >4 log10 CFU/mL killing, followed by regrowth close to initial inoculum by 96 h for Pa1281, and suppressed growth to <4 log10 CFU/mL for CR380. A and A + B initially suppressed counts of both isolates to <1 log10 CFU/mL, before regrowth to control or starting inoculum and resistance emergence by 72 h. Overall, the combination including intermittent piperacillin-tazobactam did not provide a benefit over tobramycin monotherapy. A + C, the combination regimen with continuous infusion of piperacillin-tazobactam, provided synergistic killing (counts <1 log10 CFU/mL) of Pa1281 and CR380, and suppressed regrowth to <2 and <4 log10 CFU/mL, respectively, and resistance emergence over 120 h. The shape of the concentration-time curve was important for synergy of the combination.

8.
J Glob Antimicrob Resist ; 26: 55-63, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34023531

RESUMEN

OBJECTIVES: Hypermutable Pseudomonas aeruginosa strains are a major challenge in cystic fibrosis. We investigated bacterial killing and resistance emergence for approved ceftazidime and tobramycin regimens, alone and in combination. METHODS: Pseudomonas aeruginosa PAOΔmutS and six hypermutable clinical isolates were examined using 48-h static concentration time-kill (SCTK) studies (inoculum ~107.5 CFU/mL); four strains were also studied in a dynamic in vitro model (IVM) (inoculum ~108 CFU/mL). The IVM simulated concentration-time profiles in epithelial lining fluid following intravenous administration of ceftazidime (3 g/day and 9 g/day continuous infusion), tobramycin (5 mg/kg and 10 mg/kg via 30-min infusion 24-hourly; half-life 3.5 h), and their combinations. Time courses of total and less-susceptible populations were determined. RESULTS: Ceftazidime plus tobramycin demonstrated synergistic killing in SCTK studies for all strains, although to a lesser extent for ceftazidime-resistant strains. In the IVM, ceftazidime and tobramycin monotherapies provided ≤5.4 and ≤3.4 log10 initial killing, respectively; however, re-growth with resistance occurred by 72 h. Against strains susceptible to one or both antibiotics, high-dose combination regimens provided >6 log10 initial killing, which was generally synergistic from 8-24 h, and marked suppression of re-growth and resistance at 72 h. The time course of bacterial density in the IVM was well described by mechanism-based models, enabling Monte Carlo simulations (MCSs) to predict likely effectiveness of the combination in patients. CONCLUSION: Results of the IVM and MCS suggested antibacterial effect depends both on the strain's susceptibility and hypermutability. Further investigation of the combination against hypermutable P. aeruginosa strains is warranted.


Asunto(s)
Pseudomonas aeruginosa , Tobramicina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceftazidima/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética , Tobramicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA