Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 555(7696): 342-345, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29334685

RESUMEN

The modern theory of charge polarization in solids is based on a generalization of Berry's phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

2.
Proc Natl Acad Sci U S A ; 115(22): 5698-5702, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29765000

RESUMEN

In most macroscale robotic systems, propulsion and controls are enabled through a physical tether or complex onboard electronics and batteries. A tether simplifies the design process but limits the range of motion of the robot, while onboard controls and power supplies are heavy and complicate the design process. Here, we present a simple design principle for an untethered, soft swimming robot with preprogrammed, directional propulsion without a battery or onboard electronics. Locomotion is achieved by using actuators that harness the large displacements of bistable elements triggered by surrounding temperature changes. Powered by shape memory polymer (SMP) muscles, the bistable elements in turn actuate the robot's fins. Our robots are fabricated using a commercially available 3D printer in a single print. As a proof of concept, we show the ability to program a vessel, which can autonomously deliver a cargo and navigate back to the deployment point.

3.
Proc Natl Acad Sci U S A ; 114(18): 4603-4606, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28416663

RESUMEN

The realization of acoustic devices analogous to electronic systems, like diodes, transistors, and logic elements, suggests the potential use of elastic vibrations (i.e., phonons) in information processing, for example, in advanced computational systems, smart actuators, and programmable materials. Previous experimental realizations of acoustic diodes and mechanical switches have used nonlinearities to break transmission symmetry. However, existing solutions require operation at different frequencies or involve signal conversion in the electronic or optical domains. Here, we show an experimental realization of a phononic transistor-like device using geometric nonlinearities to switch and amplify elastic vibrations, via magnetic coupling, operating at a single frequency. By cascading this device in a tunable mechanical circuit board, we realize the complete set of mechanical logic elements and interconnect selected ones to execute simple calculations.

4.
Phys Rev Lett ; 120(20): 205501, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29864363

RESUMEN

Phononic crystals and metamaterials can sculpt elastic waves, controlling their dispersion using different mechanisms. These mechanisms are mostly Bragg scattering, local resonances, and inertial amplification, derived from ad hoc, often problem-specific geometries of the materials' building blocks. Here, we present a platform that ultilizes a lattice of spiraling unit cells to create phononic materials encompassing Bragg scattering, local resonances, and inertial amplification. We present two examples of phononic materials that can control waves with wavelengths much larger than the lattice's periodicity. (1) A wave beaming plate, which can beam waves at arbitrary angles, independent of the lattice vectors. We show that the beaming trajectory can be continuously tuned, by varying the driving frequency or the spirals' orientation. (2) A topological insulator plate, which derives its properties from a resonance-based Dirac cone below the Bragg limit of the structured lattice of spirals.

5.
Sci Adv ; 9(24): eadg6075, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37315129

RESUMEN

Amino acid crystals are an attractive piezoelectric material as they have an ultrahigh piezoelectric coefficient and have an appealing safety profile for medical implant applications. Unfortunately, solvent-cast films made from glycine crystals are brittle, quickly dissolve in body fluid, and lack crystal orientation control, reducing the overall piezoelectric effect. Here, we present a material processing strategy to create biodegradable, flexible, and piezoelectric nanofibers of glycine crystals embedded inside polycaprolactone (PCL). The glycine-PCL nanofiber film exhibits stable piezoelectric performance with a high ultrasound output of 334 kPa [under 0.15 voltage root-mean-square (Vrms)], which outperforms the state-of-the-art biodegradable transducers. We use this material to fabricate a biodegradable ultrasound transducer for facilitating the delivery of chemotherapeutic drug to the brain. The device remarkably enhances the animal survival time (twofold) in mice-bearing orthotopic glioblastoma models. The piezoelectric glycine-PCL presented here could offer an excellent platform not only for glioblastoma therapy but also for developing medical implantation fields.


Asunto(s)
Glioblastoma , Nanofibras , Animales , Ratones , Aminoácidos , Glicina , Encéfalo
6.
Phys Rev E ; 104(4-1): 044902, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34781554

RESUMEN

Self-assembled granular materials can be utilized in many applications such as shock absorption and energy harvesting. Such materials are inherently discrete with an easy path to tunability through external applied forces such as stress or by adding more elements to the system. However, the self-assembly process is statistical in nature with no guarantee for repeatability, stability, or order of emergent final assemblies. Here we study both numerically and experimentally the two-dimensional self-assembly of free-floating disks with repulsive magnetic potentials confined to a boundary with embedded permanent magnets. Six different types of disks and seven boundary shapes are considered. An agent-based model is developed to predict the self-assembled patterns for any given disk type, boundary, and number of disks. The validity of the model is experimentally verified. While the model converges to a physical solution, these solutions are not always unique and depend on the initial position of the disks. The emerging patterns are classified into monostable patterns (i.e., stable patterns that emerge regardless of the initial conditions) and multistable patterns. We also characterize the emergent order and crystallinity of the emerging patterns. The developed model along with the self-assembly nature of the system can be key in creating re-programmable materials with exceptional nonlinear properties.

7.
Adv Mater ; 29(39)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28841769

RESUMEN

Phononic metamaterials rely on the presence of resonances in a structured medium to control the propagation of elastic waves. Their response depends on the geometry of their fundamental building blocks. A major challenge in metamaterials design is the realization of basic building blocks that can be tuned dynamically. Here, a metamaterial plate is realized that can be dynamically tuned by harnessing geometric and magnetic nonlinearities in the individual unit cells. The proposed tuning mechanism allows a stiffness variability of the individual unit cells and can control the amplitude of transmitted excitation through the plate over three orders of magnitude. The concepts can be extended to metamaterials at different scales, and they can be applied in a broad range of engineering applications, from seismic shielding at low frequency to ultrasonic cloaking at higher frequency ranges.

8.
Adv Mater ; 29(26)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28466978

RESUMEN

In many applications, one needs to combine materials with varying properties to achieve certain functionalities. For example, the inner layer of a helmet should be soft for cushioning while the outer shell should be rigid to provide protection. Over time, these combined materials either separate or wear and tear, risking the exposure of an undesired material property. This work presents a design principle for a material that gains unique properties from its 3D microstructure, consisting of repeating basic building blocks, rather than its material composition. The 3D printed specimens show, at two of its opposing faces along the same axis, different stiffness (i.e., soft on one face and hard on the other). The realized material is protected by design (i.e., topology) against cuts and tears: No matter how material is removed, either layer by layer, or in arbitrary cuts through the repeating building blocks, two opposing faces remain largely different in their mechanical response.

9.
Adv Mater ; 29(42)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28944559

RESUMEN

Structures that change their shape in response to external stimuli unfold possibilities for more efficient and versatile production of 3D objects. Direct laser writing (DLW) is a technique based on two-photon polymerization that allows the fabrication of microstructures with complex 3D geometries. Here, it is shown that polymerization shrinkage in DLW can be utilized to create structures with locally controllable residual stresses that enable programmable, self-bending behavior. To demonstrate this concept, planar and 3D-structured sheets are preprogrammed to evolve into bio-inspired shapes (lotus flowers and shark skins). The fundamental mechanisms that control the self-bending behavior are identified and tested with microscale experiments. Based on the findings, an analytical model is introduced to quantitatively predict bending curvatures of the fabricated sheets. The proposed method enables simple fabrication of objects with complex geometries and precisely controllable shape morphing potential, while drastically reducing the required fabrication times for producing 3D, hierarchical microstructures over large areas in the order of square centimeters.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 2): 065701, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22304147

RESUMEN

We consider two-dimensional phononic crystals formed from silicon and voids, and present optimized unit-cell designs for (1) out-of-plane, (2) in-plane, and (3) combined out-of-plane and in-plane elastic wave propagation. To feasibly search through an excessively large design space (~10(40) possible realizations) we develop a specialized genetic algorithm and utilize it in conjunction with the reduced Bloch mode expansion method for fast band-structure calculations. Focusing on high-symmetry plain-strain square lattices, we report unit-cell designs exhibiting record values of normalized band-gap size for all three categories. For the case of combined polarizations, we reveal a design with a normalized band-gap size exceeding 60%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA