Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018851

RESUMEN

During demyelination, lipid-rich myelin debris is released in the central nervous system (CNS) and must be phagocytosed and processed before new myelin can form. Although myelin comprises over 70% lipids, relatively little is known about how the CNS lipidome changes during demyelination and remyelination. In this study, we obtained a longitudinal lipidomic profile of the brain, spinal cord, and serum using a genetic mouse model of demyelination, known as Plp1-iCKO-Myrf. The mass spectrometry data is available at the Metabolomics Workbench, where it has been assigned Study ID ST002958. This model has distinct phases of demyelination and remyelination over the course of 24 weeks, in which loss of motor function peaks during demyelination. Using principal component analysis (PCA) and volcano plots, we have demonstrated that the brain and spinal cord have different remyelination capabilities and that this is reflected in different lipidomic profiles over time. We observed that plasmalogens (ether-linked phosphatidylserine and ether-linked phosphatidylcholine) were elevated specifically during the early stages of active demyelination. In addition, we identified lipids in the brain that were altered when mice were treated with a remyelinating drug, which may be CNS biomarkers of remyelination. The results of this study provide new insights into how the lipidome changes in response to demyelination, which will enable future studies to elucidate mechanisms of lipid regulation during demyelination and remyelination.

2.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33408176

RESUMEN

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract (LRT) infections, with increased severity in high-risk human populations, such as infants, the immunocompromised, and the elderly. Although the virus was identified more than 60 years ago, there is still no licensed vaccine available. Over the years, several vaccine delivery strategies have been evaluated. In this study, we developed two recombinant vesicular stomatitis virus (rVSV) vector-based vaccine candidates expressing the RSV-G (attachment) protein (rVSV-G) or F (fusion) protein (rVSV-F). All vectors were evaluated in the cotton rat animal model for their in vivo immunogenicity and protective efficacy against an RSV-A2 virus challenge. Intranasal (i.n.) delivery of rVSV-G and rVSV-F together completely protected the lower respiratory tract (lungs) at doses as low as 103 PFU. In contrast, doses greater than 106 PFU were required to protect the upper respiratory tract (URT) completely. Reimmunization of RSV-immune cotton rats was most effective with rVSV-F. In immunized animals, overall antibody responses were sufficient for protection, whereas CD4 and CD8 T cells were not necessary. A prime-boost immunization regimen increased both protection and neutralizing antibody titers. Overall, mucosally delivered rVSV-vector-based RSV vaccine candidates induce protective immunity and therefore represent a promising immunization regimen against RSV infection.IMPORTANCE Even after decades of intensive research efforts, a safe and efficacious RSV vaccine remains elusive. Expression of heterologous antigens from rVSV vectors has demonstrated several practical and safety advantages over other virus vector systems and live attenuated vaccines. In this study, we developed safe and efficacious vaccine candidates by expressing the two major immunogenic RSV surface proteins in rVSV vectors and delivering them mucosally in a prime-boost regimen. The main immune parameter responsible for protection was the antibody response. These vaccine candidates induced complete protection of both the upper and lower respiratory tracts.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Virus Sincitial Respiratorio Humano/inmunología , Vesiculovirus/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales de Fusión/inmunología , Administración a través de la Mucosa , Animales , Modelos Animales de Enfermedad , Vectores Genéticos , Inmunidad Celular , Inmunidad Humoral , Inmunización , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología , Sigmodontinae , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vesiculovirus/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo
3.
bioRxiv ; 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37546864

RESUMEN

During demyelination, lipid-rich myelin debris is released in the central nervous system (CNS) and must be phagocytosed and processed before new myelin can form. Although myelin comprises over 70% lipids, relatively little is known about how the CNS lipidome changes during demyelination and remyelination. In this study, we obtained a longitudinal lipidomic profile of the brain, spinal cord, and serum using a genetic mouse model of demyelination, known as Plp1 -iCKO- Myrf mice. This model has distinct phases of demyelination and remyelination over the course of 24 weeks, in which loss of motor function peaks during demyelination. Using principal component analysis (PCA) and volcano plots, we have demonstrated that the brain and spinal cord have different remyelination capabilities and that this is reflected in different lipidomic profiles over time. We observed that plasmalogens (ether-linked phosphatidylserine and ether-linked phosphatidylcholine) were elevated specifically during the early stages of active demyelination. In addition, we identified lipids in the brain that were altered when mice were treated with a remyelinating drug, which may be CNS biomarkers of remyelination. The results of this study provide new insights into how the lipidome changes in response to demyelination, which will enable future studies to elucidate mechanisms of lipid regulation during demyelination and remyelination.

4.
Virology ; 575: 101-110, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096069

RESUMEN

Respiratory syncytial virus is an important cause of pneumonia in children, the elderly, and immunocompromised individuals. The attachment (G) protein of RSV generates neutralizing antibodies in natural RSV infection which correlate with protection against disease. The immune response to RSV is typically short-lived, which may be related to the heavy glycosylation of RSV-G. In order to improve its immunogenicity, we expressed G protein mutants in a vesicular stomatitis virus (VSV) vector system and tested their ability to protect cotton rats from RSV challenge. We found that the most protective construct was codon-optimized RSV-G, followed by wild-type G and membrane-bound G. Constructs which expressed the G protein with reduced glycosylation or the secreted G protein provided either partial or no protection. Our results demonstrate that modifications to the G protein are not advantageous in a VSV vector system, and that an intact, codon-optimized G is a superior vaccine candidate.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Estomatitis Vesicular , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Codón , Proteínas de Unión al GTP , Inmunidad , Vacunas contra Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/genética , Sigmodontinae , Virus de la Estomatitis Vesicular Indiana , Vesiculovirus/genética , Proteínas Virales de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA