Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Exerc Immunol Rev ; 26: 10-22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32139355

RESUMEN

Moderate aerobic training may be therapeutic for chronic low-grade inflammatory diseases due to the associated anti-inflammatory response that is mediated by immune cells. The peroxisome proliferator-activated receptor gamma (PPARγ) regulates the M1 (pro-inflammatory) and M2 (anti-inflammatory) polarization, as well as the immunometabolic response of macrophages. Against this background, the present study seeks to clarify whether the conditional deletion of PPARγ in macrophages would have any effect on the anti-inflammatory role of moderate aerobic training. To test this hypothesis, two mice strains were used: PPARγ LyzCre+/+ (KO) and littermates control animals (WT). Each genotype was divided into 1) sedentary high-fat diet (HF) and 2) high-fat diet and moderate aerobic training (HFT) (n = 5-8 per group). The experimental protocol lasted for 12 weeks, comprising 4 weeks of HF diet only and 8 weeks of HF diet and aerobic training (5 times/week, 50-60 minutes/day at 60% of maximum speed). Metabolic analyses were carried out on the serum glucose homeostase, adipose tissue morphology and cytokine content, and macrophage cytokine production.Immunophenotyping and gene expression were also performed. KO male mice were more prone to hypertrophy in the subcutaneous adipose tissue, though only the IL-1ß (p = 0.0049) was higher compared to the values observed in WT animals. Peritoneal macrophages from KO animals exhibited a marked inflammatory environment with an increase in TNF-α (p = 0.0008), IL- 1ß (p = 0.0017), and IL-6 (p < 0.0001) after lipopolysaccharide stimulation. The moderate aerobic training protected both genotypes from weight gain and reduced the caloric intake in the KO animals. Despite the attenuation of the M2 marker CD206 (p < 0.001) in the absence of PPAR-γ, the aerobic training modulated cytokine production in LPS stimulated peritoneal macrophages from both genotypes, reducing proinflammatory cytokines such as TNF-α (p = 0.0002) and IL-6 (p < 0.0001). Overall, our findings demonstrate the essential role of PPARγ in macrophage immunophenotypes. However, the deletion of PPARγ did not inhibit the exercise-mediated anti-inflammatory effect, underscoring the important role of exercise in modulating inflammation.


Asunto(s)
Inflamación/inmunología , Macrófagos Peritoneales/inmunología , PPAR gamma/inmunología , Condicionamiento Físico Animal , Animales , Dieta Alta en Grasa , Inmunofenotipificación , Interleucina-1beta/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Factor de Necrosis Tumoral alfa/inmunología
2.
Life Sci ; 266: 118868, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310034

RESUMEN

Liver steatosis is one of the main drivers for the development of whole-body insulin resistance. Conversely, aerobic training (AT) has been suggested as non-pharmacological tool to improve liver steatosis, however, the underlying molecular mechanism remains unclear. Therefore, the aim of this study was to analyze the effect of 8-weeks AT in non-alcoholic liver disease (NAFLD) outcomes in obese mice. Male C57BL/6 J wild type (WT) were fed with standard (SD) or high-fat diet (HFD) for 12-weeks. Another group fed with HFD underwent 8-weeks of AT (60% of maximum velocity), initiated at the 5th week of experimental protocol. We measured metabolic, body composition parameters, protein and gene expression inflammatory and metabolic mediators. We found that AT attenuates the weight gain, but not body fat accumulation. AT improved triacylglycerol and non-esterified fatty acid plasma concentrations, and also whole-body insulin resistance. Regarding NAFLD, AT decreased the progression of macrovesicular steatosis and inflammation through the upregulation of AMPK Thr172 phosphorylation and PPAR-α protein expression. Moreover, although no effects of intervention in PPAR-γ protein concentration were observed, we found increased levels of its target genes Cd36 and Scd1 in exercised group, demonstrating augmented transcriptional activity. AT reduced liver cytokines concentrations, such as TNF-α, IL-10, MCP-1 and IL-6, regardless of increased Ser536 NF-κB phosphorylation. In fact, none of the interventions regulated NF-κB target genes Il1b and Cccl2, demonstrating its low transcriptional activity. Therefore, we conclude that AT attenuates the progression of liver macrovesicular steatosis and inflammation through AMPK-PPAR-α signaling and PPAR-γ activation, respectively, improving insulin resistance in obese mice.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Inflamación/prevención & control , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/complicaciones , PPAR alfa/metabolismo , Condicionamiento Físico Animal , Proteínas Quinasas Activadas por AMP/genética , Animales , Biomarcadores/análisis , Citocinas/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , PPAR alfa/genética , Transducción de Señal
3.
Cancers (Basel) ; 12(11)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233839

RESUMEN

The pathogenesis of muscle atrophy plays a central role in cancer cachexia, and chemotherapy contributes to this condition. Therefore, the present study aimed to evaluate the effects of endurance exercise on time-dependent muscle atrophy caused by doxorubicin. For this, C57 BL/6 mice were subcutaneously inoculated with Lewis lung carcinoma cells (LLC group). One week after the tumor establishment, a group of these animals initiated the doxorubicin chemotherapy alone (LLC + DOX group) or combined with endurance exercise (LLC + DOX + EXER group). One group of animals was euthanized after the chemotherapy cycle, whereas the remaining animals were euthanized one week after the last administration of doxorubicin. The practice of exercise combined with chemotherapy showed beneficial effects such as a decrease in tumor growth rate after chemotherapy interruption and amelioration of premature death due to doxorubicin toxicity. Moreover, the protein degradation levels in mice undergoing exercise returned to basal levels after chemotherapy; in contrast, the mice treated with doxorubicin alone experienced an increase in the mRNA expression levels of the proteolytic pathways in gastrocnemius muscle (Trim63, Fbxo32, Myostatin, FoxO). Collectively, our results suggest that endurance exercise could be utilized during and after chemotherapy for mitigating muscle atrophy promoted by doxorubicin and avoid the resumption of tumor growth.

4.
Cancer Biol Ther ; 21(4): 344-353, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-31931676

RESUMEN

Circadian rhythm is essential for cellular regulation of physiological, metabolic, and immune functions. Perturbations of circadian rhythms have been correlated with increased susceptibility to cancer and poor prognosis in the cancer treatment. Our aim is to investigate the role of doxorubicin (DOX) treatment on clock genes expression and inflammation in intraperitoneal macrophages and the antitumoral response. METHODS: Macrophages were extracted from intraperitoneal cavity of mice without or with Lewis lung carcinoma (LLC) and treated with DOX totaling four groups (CTL, LLC, LLC+DOX and DOX) and analyzes of clock genes in six time points (ZT02, ZT06, ZT10, ZT14, ZT18 AND ZT22). Intraperitoneal macrophages cell culture was stimulated with LPS and DOX and clock genes and inflammatory profile were analyzed. In tumor were analyzed macrophages markers. RESULTS: The expression of F4/80 (ZT22) and CD11c (ZT06) tumor tissue was significantly differed between LLC and LCC+DOX groups. In the intraperitoneal macrophages, DOX increased Clock (ZT10), Rev-Erbα (ZT18 and ZT22) and Per2 expressions (ZT18); in the LLC+DOX group was increased Bmal1 (ZT10), Per2 (ZT18) and NF-kB (ZT22) expressions; IL-6 expression increased in the LCC group (ZT02). In intraperitoneal macrophages cell culture stimulated with DOX and LPS after 24 h decreased Clock and Per1. DOX causes depression after 6 and 24 h in TNF-α content and Per2 gene expression after 24 h IL-1ß expression was reduced also. CONCLUSION: DOX treatment in vivo disrupted cytokine and clock genes expression in intraperitoneal macrophages suppressing immune response. Moreover, macrophages cultured with DOX had decreased expression of LPS-stimulated inflammatory cytokines.


Asunto(s)
Proteínas CLOCK/genética , Carcinoma Pulmonar de Lewis/metabolismo , Ritmo Circadiano/efectos de los fármacos , Citocinas/metabolismo , Doxorrubicina/farmacología , Inflamación/metabolismo , Macrófagos/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor , Proteínas CLOCK/metabolismo , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patología , Proliferación Celular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Tumorales Cultivadas
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(10): 158776, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32738301

RESUMEN

Palmitoleic acid (POA, 16:1n-7) is a lipokine that has potential nutraceutical use to treat non-alcoholic fatty liver disease. We tested the effects of POA supplementation (daily oral gavage, 300 mg/Kg, 15 days) on murine liver inflammation induced by a high fat diet (HFD, 59% fat, 12 weeks). In HFD-fed mice, POA supplementation reduced serum insulin and improved insulin tolerance compared with oleic acid (OA, 300 mg/Kg). The livers of POA-treated mice exhibited less steatosis and inflammation than those of OA-treated mice with lower inflammatory cytokine levels and reduced toll-like receptor 4 protein content. The anti-inflammatory effects of POA in the liver were accompanied by a reduction in liver macrophages (LM, CD11c+; F4/80+; CD86+), an effect that could be triggered by peroxisome proliferator activated receptor (PPAR)-γ, a lipogenic transcription factor upregulated in livers of POA-treated mice. We also used HFD-fed mice with selective deletion of PPAR-γ in myeloid cells (PPAR-γ KOLyzCre+) to test whether the beneficial anti-inflammatory effects of POA are dependent on macrophages PPAR-γ. POA-mediated improvement of insulin tolerance was tightly dependent on myeloid PPAR-γ, while POA anti-inflammatory actions including the reduction in liver inflammatory cytokines were preserved in mice bearing myeloid cells deficient in PPAR-γ. This overlapped with increased CD206+ (M2a) cells and downregulation of CD86+ and CD11c+ liver macrophages. Moreover, POA supplementation increased hepatic AMPK activity and decreased expression of the fatty acid binding scavenger receptor, CD36. We conclude that POA controls liver inflammation triggered by fat accumulation through induction of M2a macrophages independently of myeloid cell PPAR-γ.


Asunto(s)
Ácidos Grasos Monoinsaturados/farmacología , Inflamación/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , PPAR gamma/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Antígeno B7-2/genética , Antígeno CD11c/genética , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos Monoinsaturados/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Resistencia a la Insulina/genética , Lectinas Tipo C/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Ratones , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Proteínas Quinasas/genética , Receptores de Superficie Celular/genética
6.
Nutrients ; 11(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626010

RESUMEN

Colorectal cancer affects the large intestine, leading to loss of white adipose tissue (WAT) and alterations in adipokine secretion. Lower incidence of colorectal cancer is associated with increased fibre intake. Fructooligosaccharides (FOS) are fibres that increase production of butyrate by the intestinal microbiota. Tributyrin, a prodrug of butyric acid, exerts beneficial anti-inflammatory effects on colorectal cancer. Our aim was to characterise the effects of diets rich in FOS and tributyrin within the context of a colon carcinogenesis model, and characterise possible support of tumorigenesis by WAT. C57/BL6 male mice were divided into four groups: a control group (CT) fed with chow diet and three colon carcinogenesis-induced groups fed either with chow diet (CA), tributyrin-supplemented diet (BUT), or with FOS-supplemented diet. Colon carcinogenesis decreased adipose mass in subcutaneous, epididymal, and retroperitoneal tissues, while also reducing serum glucose and leptin concentrations. However, it did not alter the concentrations of adiponectin, interleukin (IL)-6, IL-10, and tumour necrosis factor alpha (TNF)-α in WAT. Additionally, the supplements did not revert the colon cancer affected parameters. The BUT group exhibited even higher glucose tolerance and levels of IL-6, VEGF, and TNF-α in WAT. To conclude our study, FOS and butyrate supplements were not beneficial. In addition, butyrate worsened adipose tissue inflammation.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Butiratos/farmacología , Colon/metabolismo , Neoplasias Colorrectales/metabolismo , Suplementos Dietéticos , Inflamación/metabolismo , Triglicéridos/farmacología , Adiponectina/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/patología , Animales , Glucemia/metabolismo , Colon/efectos de los fármacos , Colon/patología , Interleucina-6/metabolismo , Leptina/metabolismo , Masculino , Ratones Endogámicos C57BL , Oligosacáridos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
PLoS One ; 11(3): e0151548, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27015538

RESUMEN

White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects.


Asunto(s)
Adipoquinas/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Doxorrubicina/administración & dosificación , Metabolismo Energético/efectos de los fármacos , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/biosíntesis , Proteínas Quinasas Activadas por AMP/genética , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adiponectina/biosíntesis , Adiponectina/genética , Tejido Adiposo Blanco/metabolismo , Animales , Doxorrubicina/efectos adversos , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Lipogénesis/genética , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA