Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 464(7288): 529-35, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20336135

RESUMEN

During the past century, treatments for the diseases of youth and middle age have helped raise life expectancy significantly. However, cognitive decline has emerged as one of the greatest health threats of old age, with nearly 50% of adults over the age of 85 afflicted with Alzheimer's disease. Developing therapeutic interventions for such conditions demands a greater understanding of the processes underlying normal and pathological brain ageing. Recent advances in the biology of ageing in model organisms, together with molecular and systems-level studies of the brain, are beginning to shed light on these mechanisms and their potential roles in cognitive decline.


Asunto(s)
Envejecimiento/patología , Encéfalo/fisiopatología , Trastornos del Conocimiento/fisiopatología , Animales , Autofagia , Encéfalo/fisiología , Epigénesis Genética/fisiología , Humanos , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mitocondrias/patología , Estrés Oxidativo/fisiología , Transducción de Señal
2.
Nat Rev Genet ; 8(11): 835-44, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17909538

RESUMEN

Caloric restriction is the only known non-genetic intervention that robustly extends lifespan in mammals. This regimen also attenuates the incidence and progression of many age-dependent pathologies. Understanding the genetic mechanisms that underlie dietary-restriction-induced longevity would therefore have profound implications for future medical treatments aimed at tackling conditions that are associated with the ageing process. Until recently, however, almost nothing was known about these mechanisms in metazoans. Recent advances in our understanding of the genetic bases of energy sensing and lifespan control in yeast, invertebrates and mammals have begun to solve this puzzle. Evidence is mounting that the brain has a crucial role in sensing dietary restriction and promoting longevity in metazoans.


Asunto(s)
Restricción Calórica , Dieta , Longevidad/genética , Saccharomyces cerevisiae/genética , Animales , Humanos , Longevidad/fisiología , Saccharomyces cerevisiae/fisiología
3.
Nature ; 447(7144): 545-9, 2007 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-17538612

RESUMEN

Dietary restriction extends lifespan and retards age-related disease in many species and profoundly alters endocrine function in mammals. However, no causal role of any hormonal signal in diet-restricted longevity has been demonstrated. Here we show that increased longevity of diet-restricted Caenorhabditis elegans requires the transcription factor gene skn-1 acting in the ASIs, a pair of neurons in the head. Dietary restriction activates skn-1 in these two neurons, which signals peripheral tissues to increase metabolic activity. These findings demonstrate that increased lifespan in a diet-restricted metazoan depends on cell non-autonomous signalling from central neuronal cells to non-neuronal body tissues, and suggest that the ASI neurons mediate diet-restriction-induced longevity by an endocrine mechanism.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Restricción Calórica , Proteínas de Unión al ADN/metabolismo , Longevidad/fisiología , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/anatomía & histología , Proteínas de Caenorhabditis elegans/genética , Respiración de la Célula , Proteínas de Unión al ADN/genética , Dieta , Cabeza , Modelos Biológicos , Consumo de Oxígeno , Factores de Transcripción/genética
4.
Proc Natl Acad Sci U S A ; 107(44): 18927-32, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20956318

RESUMEN

Studies of long-lived Caenorhabditis elegans mutants have identified several genes that function to limit lifespan, i.e., loss-of-function mutations in these genes promote longevity. By contrast, little is known about genes that normally act to delay aging and that when mutated cause premature aging (progeria). To seek such genes, we performed a genetic screen for C. elegans mutants that age prematurely. We found that loss-of-function mutations of the ketoacyl thiolase gene kat-1 result in an increased accumulation of the lipofuscin-like fluorescent aging pigment, shortened lifespan, early behavioral decline, and other abnormalities characteristic of premature aging. These findings suggest that kat-1 acts to delay C. elegans aging. kat-1 encodes a conserved metabolic enzyme that catalyzes the last step of fatty acid oxidation and was previously shown to regulate fat accumulation in worms. We observed that kat-1 is required for the extension of lifespan and enhanced thermotolerance mediated by extra copies of the deacetylase gene sir-2.1. kat-1 acts independently of other known pathways that affect longevity. Our findings suggest that defects in fatty acid oxidation can limit lifespan and accelerate aging in C. elegans and that kat-1-mediated fatty acid oxidation is crucial for overexpressed sir-2.1 to delay aging.


Asunto(s)
Acetil-CoA C-Aciltransferasa/metabolismo , Envejecimiento/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Ácidos Grasos/metabolismo , Sirtuinas/metabolismo , Acetil-CoA C-Aciltransferasa/genética , Envejecimiento Prematuro/enzimología , Envejecimiento Prematuro/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ácidos Grasos/genética , Lipofuscina/genética , Lipofuscina/metabolismo , Mutación , Oxidación-Reducción , Progeria/enzimología , Progeria/genética , Sirtuinas/genética
5.
Cell Rep ; 26(5): 1112-1127.e9, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699343

RESUMEN

The molecular basis of the earliest neuronal changes that lead to Alzheimer's disease (AD) is unclear. Here, we analyze neural cells derived from sporadic AD (SAD), APOE4 gene-edited and control induced pluripotent stem cells (iPSCs). We observe major differences in iPSC-derived neural progenitor (NP) cells and neurons in gene networks related to neuronal differentiation, neurogenesis, and synaptic transmission. The iPSC-derived neural cells from SAD patients exhibit accelerated neural differentiation and reduced progenitor cell renewal. Moreover, a similar phenotype appears in NP cells and cerebral organoids derived from APOE4 iPSCs. Impaired function of the transcriptional repressor REST is strongly implicated in the altered transcriptome and differentiation state. SAD and APOE4 expression result in reduced REST nuclear translocation and chromatin binding, and disruption of the nuclear lamina. Thus, dysregulation of neural gene networks may set in motion the pathologic cascade that leads to AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Redes Reguladoras de Genes , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Diferenciación Celular/genética , Reprogramación Celular/genética , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Persona de Mediana Edad , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Lámina Nuclear/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA