Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537273

RESUMEN

BACKGROUND: Bone infections from Staphylococcus aureus are notoriously difficult to treat and have high recurrence rates. Local antibiotic delivery systems hold the potential to achieve high in situ antibiotic concentrations, which are otherwise challenging to achieve via systemic administration. Existing solutions have been shown to confer suboptimal drug release and distribution. Here we present and evaluate an injectable in situ-forming depot system termed CarboCell. The CarboCell technology provides sustained and tuneable release of local high-dose antibiotics. METHODS: CarboCell formulations of levofloxacin or clindamycin with or without antimicrobial adjuvants cis-2-decenoic acid or cis-11-methyl-2-dodecenoic acid were tested in experimental rodent and porcine implant-associated osteomyelitis models. In the porcine models, debridement and treatment with CarboCell-formulated antibiotics was carried out without systemic antibiotic administration. The bacterial burden was determined by quantitative bacteriology. RESULTS: CarboCell formulations eliminated S. aureus in infected implant rat models. In the translational implant-associated pig model, surgical debridement, and injection of clindamycin-releasing CarboCell formulations resulted in pathogen-free bone tissues and implants in 9/12, and full eradication in 5/12 pigs. CONCLUSIONS: Sustained release of antimicrobial agents mediated by the CarboCell technology demonstrated promising therapeutic efficacy in challenging translational models and may be beneficial in combination with the current standard of care.

2.
Antimicrob Agents Chemother ; 68(2): e0138723, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38189278

RESUMEN

The cell-to-cell communication system quorum sensing (QS), used by various pathogenic bacteria to synchronize gene expression and increase host invasion potentials, is studied as a potential target for persistent infection control. To search for novel molecules targeting the QS system in the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, a chemical library consisting of 3,280 small compounds from LifeArc was screened. A series of 10 conjugated phenones that have not previously been reported to target bacteria were identified as inhibitors of QS in P. aeruginosa. Two lead compounds (ethylthio enynone and propylthio enynone) were re-synthesized for verification of activity and further elucidation of the mode of action. The isomeric pure Z-ethylthio enynone was used for RNA sequencing, revealing a strong inhibitor of QS-regulated genes, and the QS-regulated virulence factors rhamnolipid and pyocyanin were significantly decreased by treatment with the compounds. A transposon mutagenesis screen performed in a newly constructed lasB-gfp monitor strain identified the target of Z-ethylthio enynone in P. aeruginosa to be the MexEF-OprN efflux pump, which was further established using defined mex knockout mutants. Our data indicate that the QS inhibitory capabilities of Z-ethylthio enynone were caused by the drainage of intracellular signal molecules as a response to chemical-induced stimulation of the MexEF-oprN efflux pump, thereby inhibiting the autogenerated positive feedback and its enhanced signal-molecule synthesis.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/genética , Percepción de Quorum/genética , Factores de Virulencia/genética , Proteínas Bacterianas/genética
3.
Allergy ; 79(6): 1548-1559, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38477552

RESUMEN

BACKGROUND: Skin tape-strips and biopsies are widely used methods for investigating the skin in atopic dermatitis (AD). Biopsies are more commonly used but can cause scarring and pain, whereas tape-strips are noninvasive but sample less tissue. The study evaluated the performance of skin tape-strips and biopsies for studying AD. METHODS: Whole-transcriptome RNA-sequencing was performed on paired tape-strips and biopsies collected from lesional and non-lesional skin from AD patients (n = 7) and non-AD controls (n = 5). RNA yield, mapping efficiency, and differentially expressed genes (DEGs) for the two methods (tape-strip/biopsy) and presence of AD (AD/non-AD) were compared. RESULTS: Tape-strips demonstrated a lower RNA yield (22 vs. 4596 ng) and mapping efficiency to known genes (28% vs. 93%) than biopsies. Gene-expression profiles of paired tape-strips and biopsies demonstrated a medium correlation (R2 = 0.431). Tape-strips and biopsies demonstrated systematic differences in measured expression levels of 6483 genes across both AD and non-AD samples. Tape-strips preferentially detected many itch (CCL3/CCL4/OSM) and immune-response (CXCL8/IL4/IL5/IL22) genes as well as markers of epidermal dendritic cells (CD1a/CD207), while certain cytokines (IL18/IL37), skin-barrier genes (KRT2/FLG2), and dermal fibroblasts markers (COL1A/COL3A) were preferentially detected by biopsies. Tape-strips identified more DEGs between AD and non-AD (3157 DEGs) then biopsies (44 DEGs). Tape-strips also detected higher levels of bacterial mRNA than biopsies. CONCLUSIONS: This study concludes that tape-strips and biopsies each demonstrate respective advantages for measuring gene-expression changes in AD. Thus, the specific skin layers and genes of interest should be considered before selecting either method.


Asunto(s)
Dermatitis Atópica , Piel , Humanos , Dermatitis Atópica/genética , Dermatitis Atópica/patología , Biopsia , Piel/patología , Piel/metabolismo , Femenino , Análisis de Secuencia de ARN , Masculino , Perfilación de la Expresión Génica , Transcriptoma , Adulto , Cinta Quirúrgica , Persona de Mediana Edad
4.
Wound Repair Regen ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558438

RESUMEN

Slough is a well-known feature of non-healing wounds. This pilot study aims to determine the proteomic and microbiologic components of slough as well as interrogate the associations between wound slough components and wound healing. Ten subjects with slow-to-heal wounds and visible slough were enrolled. Aetiologies included venous stasis ulcers, post-surgical site infections and pressure ulcers. Patient co-morbidities and wound healing outcome at 3-months post-sample collection was recorded. Debrided slough was analysed microscopically, through untargeted proteomics, and high-throughput bacterial 16S-ribosomal gene sequencing. Microscopic imaging revealed wound slough to be amorphous in structure and highly variable. 16S-profiling found slough microbial communities to associate with wound aetiology and location on the body. Across all subjects, slough largely consisted of proteins involved in skin structure and formation, blood-clot formation and immune processes. To predict variables associated with wound healing, protein, microbial and clinical datasets were integrated into a supervised discriminant analysis. This analysis revealed that healing wounds were enriched for proteins involved in skin barrier development and negative regulation of immune responses. While wounds that deteriorated over time started off with a higher baseline Bates-Jensen Wound Assessment Score and were enriched for anaerobic bacterial taxa and chronic inflammatory proteins. To our knowledge, this is the first study to integrate clinical, microbiome, and proteomic data to systematically characterise wound slough and integrate it into a single assessment to predict wound healing outcome. Collectively, our findings underscore how slough components can help identify wounds at risk of continued impaired healing and serves as an underutilised biomarker.

5.
Acta Odontol Scand ; 82(1): 40-47, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688516

RESUMEN

OBJECTIVE: Necrotizing soft-tissue infection (NSTI) in the head and neck area may develop from odontogenic infections. The aim of this study was to characterize patients with NSTI in the head and neck with odontogenic origin in a well-defined prospectively collected cohort. MATERIAL AND METHODS: Patients with NSTI in the head and neck, hospitalized between 2013 and 2017 at Copenhagen University Hospital and registered in the Scandinavian INFECT database were included. Medical records of identified patients and from the INFECT database were screened for a defined set of data including the primary focus of infection, comorbidities, predisposing factors, clinical and radiographic diagnostics, course of treatment, and treatment outcome. RESULTS: Thirty-five patients with NSTI in the head and neck area were included in the study. A total of 54% had odontogenic origin, primarily from mandibular molars, and 94% had radiographic signs of infectious oral conditions. Overall, comorbidities were reported in 51% with cardiovascular disease being the most prevalent. In 20%, no comorbidities or predisposing conditions could be identified. The overall 30-day mortality rate was 9%. CONCLUSIONS: More than half of NSTI cases in the head and neck region had an odontogenic origin, and special attention should be paid to infections related to mandibular molars.


Asunto(s)
Fascitis Necrotizante , Infecciones de los Tejidos Blandos , Humanos , Infecciones de los Tejidos Blandos/diagnóstico , Infecciones de los Tejidos Blandos/terapia , Fascitis Necrotizante/diagnóstico , Fascitis Necrotizante/terapia , Estudios Retrospectivos , Cuello , Resultado del Tratamiento
6.
Microbiology (Reading) ; 169(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38050845

RESUMEN

In this primer on biofilms and their role in infections, we trace the historical roots of microbial understanding from Van Leeuwenhoek's observations to Bill Costerton's groundbreaking work, which solidified biofilms' significance in infections. In vivo biofilm research, investigating patient samples and utilizing diverse host models, has yielded invaluable insights into these complex microbial communities. However, it comes with several challenges, particularly regarding replicating biofilm infections accurately in the laboratory. In vivo biofilm analyses involve various techniques, revealing biofilm architecture, composition, and behaviour, while gaps in knowledge persist regarding infection initiation and source, diversity, and the Infectious Microenvironment (IME). Ultimately, the study of biofilms in infections remains a dynamic and evolving field poised to transform our approach to combat biofilm-associated diseases.


Asunto(s)
Biopelículas , Infecciones , Humanos , Infecciones/microbiología
7.
Microbiology (Reading) ; 169(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748633

RESUMEN

In the present study we evaluated the fitness, antimicrobial susceptibility, metabolic activity, gene expression, in vitro production of virulence factors and in vivo virulence of experimentally evolved Pseudomonas aeruginosa PAO1. These strains were previously evolved in the presence of tobramycin and the quorum sensing inhibitor furanone C-30 (C-30) and carried mutations in mexT and fusA1. Compared to the wild-type (WT), the evolved strains show a different growth rate and different metabolic activity, suggesting they have an altered fitness. mexT mutants were less susceptible to C-30 than WT strains; they also show reduced susceptibility to chloramphenicol and ciprofloxacin, two substrates of the MexEF-OprN efflux pump. fusA1 mutants had a decreased susceptibility to aminoglycoside antibiotics, and an increased susceptibility to chloramphenicol. The decreased antimicrobial susceptibility and decreased susceptibility to C-30 was accompanied by a changed metabolic activity profile during treatment. The expression of mexE was significantly increased in mexT mutants and induced by C-30, suggesting that MexEF-OprN exports C-30 out of the bacterial cell. The in vitro production of virulence factors as well as virulence in two in vivo models of the strains evolved in the presence of C-30 was unchanged compared to the virulence of the WT. Finally, the evolved strains were less susceptible towards tobramycin (alone and combined with C-30) in an in vivo mouse model. In conclusion, this study shows that mutations acquired during experimental evolution of P. aeruginosa biofilms in the presence of tobramycin and C-30, are accompanied by an altered fitness, metabolism, mexE expression and in vitro and in vivo antimicrobial susceptibility.


Asunto(s)
Pseudomonas aeruginosa , Tobramicina , Animales , Ratones , Pseudomonas aeruginosa/metabolismo , Tobramicina/farmacología , Tobramicina/metabolismo , Percepción de Quorum/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Cloranfenicol , Biopelículas , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
8.
J Clin Microbiol ; 61(9): e0033823, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37367430

RESUMEN

rRNA gene Sanger sequencing is being used for the identification of cultured pathogens. A new diagnostic approach is sequencing of uncultured samples by using the commercial DNA extraction and sequencing platform SepsiTest (ST). The goal was to analyze the clinical performance of ST with a focus on nongrowing pathogens and the impact on antibiotic therapy. A literature search used PubMed/Medline, Cochrane, Science Direct, and Google Scholar. Eligibility followed PRISMA-P criteria. Quality and risk of bias were assessed drawing on QUADAS-2 (quality assessment of diagnostic accuracy studies, revised) criteria. Meta-analyses were performed regarding accuracy metrics compared to standard references and the added value of ST in terms of extra found pathogens. We identified 25 studies on sepsis, infectious endocarditis, bacterial meningitis, joint infections, pyomyositis, and various diseases from routine diagnosis. Patients with suspected infections of purportedly sterile body sites originated from various hospital wards. The overall sensitivity (79%; 95% confidence interval [CI], 73 to 84%) and specificity (83%; 95% CI, 72 to 90%) were accompanied by large effect sizes. ST-related positivity was 32% (95% CI, 30 to 34%), which was significantly higher than the culture positivity (20%; 95% CI, 18 to 22%). The overall added value of ST was 14% (95% CI, 10 to 20%) for all samples. With 130 relevant taxa, ST uncovered high microbial richness. Four studies demonstrated changes of antibiotic treatment at 12% (95% CI, 9 to 15%) of all patients upon availability of ST results. ST appears to be an approach for the diagnosis of nongrowing pathogens. The potential clinical role of this agnostic molecular diagnostic tool is discussed regarding changes of antibiotic treatment in cases where culture stays negative.


Asunto(s)
Bacterias , Micosis , Humanos , Antibacterianos , Bacterias/genética , Genes de ARNr , Metaanálisis como Asunto , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , ARN Ribosómico 18S , Sensibilidad y Especificidad , Revisiones Sistemáticas como Asunto
9.
BMC Microbiol ; 23(1): 273, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773096

RESUMEN

There has been considerable research into the understanding of the healthy skin microbiome. Similarly, there is also a considerable body of research into whether specific microbes contribute to skin disorders, with atopic dermatitis (AD) routinely linked to increased Staphylococcus aureus (S. aureus) colonisation. In this study, the epidermal surface of participants was sampled using swabs, while serial tape-stripping (35 tapes) was performed to sample through the stratum corneum. Samples were taken from AD patients and healthy controls, and the bacterial communities were profiled by metabarcoding the universal V3-V4 16S rRNA region. Results show that the majority of bacterial richness is located within the outermost layers of the stratum corneum, however there were many taxa that were found almost exclusively at the very outermost layer of the epidermis. We therefore hypothesise that tape-stripping can be performed to investigate the 'core microbiome' of participants by removing environmental contaminants. Interestingly, significant community variation between AD patients and healthy controls was only observable at the epidermal surface, yet a number of individual taxa were found to consistently differ with AD status across the entire epidermis (i.e. both the epidermal surface and within the epidermis). Sampling strategy could therefore be tailored dependent on the hypothesis, with sampling for forensic applications best performed using surface swabs and outer tapes, while profiling sub-surface communities may better reflect host genome and immunological status.


Asunto(s)
Dermatitis Atópica , Humanos , Dermatitis Atópica/microbiología , Staphylococcus aureus/genética , ARN Ribosómico 16S/genética , Epidermis/microbiología , Piel/microbiología
10.
Wound Repair Regen ; 31(4): 500-515, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37183189

RESUMEN

A new in vitro chronic wound biofilm model was recently published, which provided a layered scaffold simulating mammalian tissue composition on which topical wound care products could be tested. In this paper, we updated the model even further to mimic the dynamic influx of nutrients from below as is the case in a chronic wound. The modified in vitro model was created using collagen instead of agar as the main matrix component and contained both Staphylococcus aureus and Pseudomonas aeruginosa. The model was cast in transwell inserts and then placed in wound simulating media, which allowed for an exchange of nutrients and waste products across a filter. Three potential wound care products and chlorhexidine digluconate 2% solution as a positive control were used to evaluate the model. The tested products were composed of hydrogels made from completely biodegradable starch microspheres carrying different active compounds. The compounds were applied topically and left for 2-4 days. Profiles of oxygen concentration and pH were measured to assess the effect of treatments on bacterial activity. Confocal microscope images were obtained of the models to visualise the existence of microcolonies. Results showed that the modified in vitro model maintained a stable number of the two bacterial species over 6 days. In untreated models, steep oxygen gradients developed and pH increased to >8.0. Hydrogels containing active compounds alleviated the high oxygen consumption and decreased pH drastically. Moreover, all three hydrogels reduced the colony forming units significantly and to a larger extent than the chlorhexidine control treatment. Overall, the modified model expressed several characteristics similar to in vivo chronic wounds.


Asunto(s)
Antiinfecciosos , Infección de Heridas , Animales , Cicatrización de Heridas , Infección de Heridas/microbiología , Antiinfecciosos/farmacología , Colágeno/farmacología , Bacterias , Biopelículas , Oxígeno , Hidrogeles/farmacología , Pseudomonas aeruginosa , Antibacterianos/farmacología , Mamíferos
11.
Clin Oral Investig ; 27(7): 3639-3648, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37002439

RESUMEN

OBJECTIVES: Recent studies have indicated that cerebral abscess (CA) patients with odontogenic origin are on the rise. However, CA patients are often poorly characterized and with an unknown etiologic background. The purpose of this study is to identify and characterize CA patients that may have an odontogenic origin based on microbiologic, radiographic, and/or clinical findings. MATERIALS AND METHODS: This is a population-based cohort study analyzing retrospective and prospective data from CA patients. Radiographic examinations of panoramic radiographs (PRs) or computed tomography (CT) scans were conducted. CA patients characterized with odontogenic origin required the fulfilment of the following criteria on admission: (1) Oral pathologic conditions were the only bacterial infections present, (2) oral microorganisms were isolated in the purulent exudate from the brain, and (3) radiographically and/or clinical recordings of oral pathologic conditions. RESULTS: A total of 44 patients could be included in this study of which 25 (57%) were characterized as having CA with a likely odontogenic origin. Type two diabetes (T2D) (p = 0.014) and microorganisms of the Streptococcus anginosus group (SAG) (p < 0.01) were overrepresented in patients with CAs of odontogenic origin. CONCLUSIONS: Odontogenic infections may cause CAs to a greater extent than previously assumed. T2D was overrepresented among patients with odontogenic CA. When microorganisms of the SAG were isolated from the brain pus, CA patients had a predisposing odontogenic or sinus infection. CLINICAL RELEVANCE: The identification of patients with a likely odontogenic CA will contribute to understanding the etiology of the infectious disease and highlighting the importance of preserving oral health.


Asunto(s)
Absceso Encefálico , Diabetes Mellitus Tipo 2 , Humanos , Estudios Retrospectivos , Estudios de Cohortes , Estudios Prospectivos , Absceso Encefálico/diagnóstico por imagen
12.
J Bacteriol ; 204(5): e0056821, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35416688

RESUMEN

Biofilms are aggregates of microorganisms embedded in an extracellular matrix comprised largely of exopolysaccharides (EPSs), nucleic acids, and proteins. Pseudomonas aeruginosa is an opportunistic human pathogen that is also a model organism for studying biofilms in the laboratory. Here, we define a novel program of biofilm development used by mucoid (alginate-overproducing) P. aeruginosa in the presence of elevated calcium. Calcium cations cross-link negatively charged alginate polymers, resulting in individual cells being suspended in an alginate gel. The formation of this type of structurally distinct biofilm is not reliant on the canonical biofilm EPS components Psl and Pel or the matrix protein CdrA. We also observed that mucoid P. aeruginosa biofilm cells do not have the typical elevated levels of the secondary messenger cyclic di-GMP (c-di-GMP), as expected of biofilm cells, nor does the overproduction of alginate rely on high c-di-GMP. This contrasts with nonmucoid biofilms in which the production of the matrix components Psl, Pel, and CdrA is positively regulated by elevated c-di-GMP. We further demonstrate that calcium-gelled alginate biofilms impede the penetration of the antibiotic tobramycin, thus protecting the biofilm community from antibiotic-mediated killing. Finally, we show that bacterial aggregates with a dispersed cell arrangement like laboratory-grown calcium-alginate biofilm structures are present in explanted cystic fibrosis (CF) lung samples. Our findings illustrate the diverse nature of biofilm formation and structure in P. aeruginosa. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa produces a complex biofilm matrix comprised of exopolysaccharides (EPSs), nucleic acids, and proteins. P. aeruginosa biofilm formation canonically depends on a variable combination of the exopolysaccharides Psl and Pel and the matrix protein CdrA. We demonstrate that mucoid P. aeruginosa, which overproduces the EPS alginate, possesses an entirely alternate and calcium-dependent method of biofilm formation. These mucoid biofilm structures do not require Psl, Pel, or CdrA, and they display a unique organization of individually suspended cells similar to bacterial aggregates observed in cystic fibrosis airways. Furthermore, calcium-gelled mucoid biofilms impede the penetration and killing action of the antibiotic tobramycin, illustrating their potential clinical significance. Our findings highlight the compositional and structural variety of P. aeruginosa biofilm aggregates.


Asunto(s)
Fibrosis Quística , Ácidos Nucleicos , Alginatos/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Biopelículas , Calcio/metabolismo , Humanos , Ácidos Nucleicos/metabolismo , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo , Tobramicina/metabolismo , Tobramicina/farmacología
13.
J Bacteriol ; 204(11): e0017422, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36218351

RESUMEN

Pseudomonas aeruginosa inhibits or eradicates Staphylococcus aureus in most in vitro settings. Nonetheless, P. aeruginosa and S. aureus are commonly isolated from chronically infected, nonhealing wounds and lungs of people with cystic fibrosis (CF). Therefore, we hypothesized that S. aureus could protect itself from P. aeruginosa through glucose-derived metabolites, such as small organic acids, preventing it from being eradicated. This in vitro study demonstrated that S. aureus populations, in the presence of glucose, secrete one or more substances that efficiently eradicate P. aeruginosa in a concentration-dependent manner. These substances had a molecular mass lower than three kDa, were hydrophilic, heat- and proteinase-resistant, and demonstrated a pH-dependent effect. Nuclear magnetic resonance analysis identified acetoin, acetic acid, and oligopeptides or cyclic peptides in glucose-grown S. aureus supernatants. All the tested wild-type and clinical S. aureus strain inhibited P. aeruginosa growth. Thus, we proposed a model in which a cocktail of these compounds, produced by established S. aureus populations in glucose presence, facilitated these two species' coexistence in chronic infections. IMPORTANCE Chronic infections affect a growing part of the population and are associated with high societal and personal costs. Multiple bacterial species are often present in these infections, and multispecies infections are considered more severe than single-species infections. Staphylococcus aureus and Pseudomonas aeruginosa often coexist in chronic infections. However, the interactions between these two species and their coexistence in chronic infections are not fully understood. By exploring in vitro interactions, we found a novel S. aureus-mediated inhibition of P. aeruginosa, and we suggested a model of the coexistence of the two species in chronic infections. With this study, we enhanced our understanding of the pathogenesis of chronic multispecies infections, which is crucial to paving the way for developing improved treatment strategies.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Infecciones Estafilocócicas , Humanos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Infecciones Estafilocócicas/microbiología , Fibrosis Quística/microbiología , Glucosa/metabolismo , Infecciones por Pseudomonas/microbiología , Biopelículas
14.
Thorax ; 77(10): 1015-1022, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35017313

RESUMEN

BACKGROUND: A basic paradigm of human infection is that acute bacterial disease is caused by fast growing planktonic bacteria while chronic infections are caused by slow-growing, aggregated bacteria, a phenomenon known as a biofilm. For lung infections, this paradigm has been thought to be supported by observations of how bacteria proliferate in well-established growth media in the laboratory-the gold standard of microbiology. OBJECTIVE: To investigate the bacterial architecture in sputum from patients with acute and chronic lung infections. METHODS: Advanced imaging technology was used for quantification and direct comparison of infection types on fresh sputum samples, thereby directly testing the acute versus chronic paradigm. RESULTS: In this study, we compared the bacterial lifestyle (planktonic or biofilm), growth rate and inflammatory response of bacteria in freshly collected sputum (n=43) from patient groups presenting with acute or chronic lung infections. We found that both acute and chronic lung infections are dominated by biofilms (aggregates of bacteria within an extracellular matrix), although planktonic cells were observed in both sample types. Bacteria grew faster in sputum from acute infections, but these fast-growing bacteria were enriched in biofilms similar to the architecture thought to be reserved for chronic infections. Cellular inflammation in the lungs was also similar across patient groups, but systemic inflammatory markers were only elevated in acute infections. CONCLUSIONS: Our findings indicate that the current paradigm of equating planktonic with acute and biofilm with chronic infection needs to be revisited as the difference lies primarily in metabolic rates, not bacterial architecture.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Infección Persistente , Infecciones por Pseudomonas/microbiología , Fibrosis Quística/microbiología , Biopelículas , Pulmón/microbiología , Bacterias , Reinfección , Pseudomonas aeruginosa/fisiología , Antibacterianos/uso terapéutico
15.
J Wound Care ; 31(Sup12): S48-S59, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36475847

RESUMEN

OBJECTIVES: The aim of this study was to establish an international, interorganisational consensus on wound infection terminology. METHODS: This project consisted of definition scoping and a Delphi process to produce a consensus glossary for 18 wound infection terms. Recent guidelines/consensus documents were reviewed to identify 2-4 definitions for each term. An online consensus process was undertaken using the RAND Appropriateness Method, a consensus method for panels to reach agreement. International wound organisations nominated experts to participate, from whom 21 participants were selected to represent different organisations, geographic regions and disciplines. In the first consensus round, each term was presented alongside 2-3 definitions and participants nominated their preferred definition, with the majority vote used to select a baseline definition. The consensus process then proceeded, with participants using a 9-point Likert scale to score their level of agreement or disagreement with the definition for each term. Participants also provided a justification outlining the reason behind their rating. At the end of each round, an index was calculated to provide a quantitative evaluation indicating whether agreement or disagreement had been reached. RESULTS: Reasoning statements were summarised and the definitions were adjusted to incorporate concepts identified by participants. The adjusted definition was presented in the next consensus round, together with the reasoning statements. Terms for which a final definition was not achieved in three consensus rounds were finalised with preferential voting using 2-3 definitions that had reached consensus. PROJECT PROGRESS AND SIGNIFICANCE: The project generated a glossary of wound infection terms, endorsed through participation of 15 international organisations, for dissemination of guidelines and clinical decision-making/teaching tools.


Asunto(s)
Infección de Heridas , Humanos , Infección de Heridas/diagnóstico
16.
J Wound Care ; 31(Sup12): S10-S21, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36475844

RESUMEN

ABSTRACT: Wound infection is a major challenge for clinicians globally, with accurate and timely identification of wound infection being critical to achieving clinical and cost-effective management, and promotion of healing. This paper presents an overview of the development of the International Wound Infection Institute (IWII)'s 2022 Wound Infection in Clinical Practice consensus document. The updated document summarises current evidence and provides multidisciplinary healthcare providers with effective guidance and support on terminology, paradigms related to biofilm, identification of wound infection, wound cleansing, debridement and antimicrobial stewardship. Integral to the update is revision of wound infection management strategies which are incorporated within the IWII's Wound Infection Continuum (IWII-WIC) and management plan. The aim of the 2022 IWII consensus document update was to provide an accessible and useful clinical resource in at least six languages, incorporating the latest evidence and current best practice for wound infection and prevention. Dissemination techniques for the consensus are discussed and highlighted.


Asunto(s)
Infección de Heridas , Humanos , Infección de Heridas/terapia
17.
Wound Repair Regen ; 29(5): 820-829, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34105845

RESUMEN

Chronic wounds are a large burden to patients and healthcare systems. Biofilm infections in chronic wounds are crucial factors leading to non-healing of wounds. It is important to study biofilm in wounds and to develop effective interventions against wound biofilm. This study presents a novel in vitro biofilm model mimicking infected chronic wounds. The novel layered chronic wound biofilm model uses woundlike media and includes both Pseudomonas aeruginosa and Staphylococcus aureus, which have been identified as the most important pathogens in wounds. The model sustains their coexistence for at least 96 h. Microscopy of the model revealed microbial growth in non-surface attached microcolonies as previously observed in vivo. The model was used to determine log10 -reduction for the use of an antimicrobial solution and antimicrobial dressings (containing silver or honey) showing moderate-to-low antibiofilm effect, which indicates better concordance with the observed clinical performance of this type of treatment than other widely used standard tests.


Asunto(s)
Pseudomonas aeruginosa , Infección de Heridas , Vendajes , Biopelículas , Humanos , Staphylococcus aureus , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico
18.
Proc Natl Acad Sci U S A ; 115(22): E5125-E5134, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760087

RESUMEN

Laboratory experiments have uncovered many basic aspects of bacterial physiology and behavior. After the past century of mostly in vitro experiments, we now have detailed knowledge of bacterial behavior in standard laboratory conditions, but only a superficial understanding of bacterial functions and behaviors during human infection. It is well-known that the growth and behavior of bacteria are largely dictated by their environment, but how bacterial physiology differs in laboratory models compared with human infections is not known. To address this question, we compared the transcriptome of Pseudomonas aeruginosa during human infection to that of P. aeruginosa in a variety of laboratory conditions. Several pathways, including the bacterium's primary quorum sensing system, had significantly lower expression in human infections than in many laboratory conditions. On the other hand, multiple genes known to confer antibiotic resistance had substantially higher expression in human infection than in laboratory conditions, potentially explaining why antibiotic resistance assays in the clinical laboratory frequently underestimate resistance in patients. Using a standard machine learning technique known as support vector machines, we identified a set of genes whose expression reliably distinguished in vitro conditions from human infections. Finally, we used these support vector machines with binary classification to force P. aeruginosa mouse infection transcriptomes to be classified as human or in vitro. Determining what differentiates our current models from clinical infections is important to better understand bacterial infections and will be necessary to create model systems that more accurately capture the biology of infection.


Asunto(s)
Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transcriptoma/genética , Animales , Biopelículas , Fibrosis Quística , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Genes Bacterianos , Humanos , Aprendizaje Automático , Ratones , Pseudomonas aeruginosa/aislamiento & purificación , Percepción de Quorum/genética , Máquina de Vectores de Soporte , Infección de la Herida Quirúrgica/metabolismo , Infección de la Herida Quirúrgica/microbiología
19.
Artículo en Inglés | MEDLINE | ID: mdl-31740557

RESUMEN

Pulmonary infection with the multidrug-resistant Mycobacterium abscessus complex (MABSC) is difficult to treat in individuals with cystic fibrosis (CF). MABSC grows as biofilm aggregates in CF patient lungs, which are known to have anaerobic niches. How aggregation and anoxic conditions affect antibiotic tolerance is not well understood. We sought to determine whether disaggregation and oxygen availability sensitize MABSC isolates to recommended antibiotics. We tested the susceptibilities of 33 isolates from 22 CF patients with MABSC infection and a reference strain to the following antibiotics: amikacin, azithromycin, cefoxitin, ciprofloxacin, clarithromycin, imipenem, kanamycin, linezolid, moxifloxacin, rifampin, tigecycline, and sulfamethoxazole-trimethoprim. Isolates were grown in Mueller-Hinton broth with and without the disaggregating detergent Tween 80 (5%). Time-kill curves at days 1 and 3 were generated for oxic and anoxic amikacin treatment in 4-fold dilutions ranging from 2 to 512 mg liter-1 Scanning electron microscopy was used to visualize the aggregation patterns, while confocal laser scanning microscopy and microrespirometry were used to visualize biofilm growth patterns. Disruption of MABSC aggregates increased susceptibility to amikacin, tigecycline, kanamycin, azithromycin, imipenem, cefoxitin, and clarithromycin (P < 0.05, n = 29 to 31). Oxygenation enhanced the killing of disaggregated MABSC isolates by amikacin (P < 0.05) by 1 to 6 log units when 2 to 512 mg liter-1 of amikacin was used. This study explains why current drug susceptibility testing results correlate poorly with treatment outcomes. The conditions achieved by oxic culturing of planktonic isolates in vitro do not resemble the hypoxic conditions in CF patient lungs. Biofilm disruption and increased O2 availability during antibiotic therapy may be new therapeutic strategies for chronic MABSC infection.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Mycobacterium abscessus , Oxígeno/farmacología , Adolescente , Aerobiosis , Antibacterianos/uso terapéutico , Niño , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana Múltiple , Femenino , Humanos , Pulmón/microbiología , Masculino , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium abscessus/ultraestructura , Polisorbatos/farmacología , Tensoactivos/farmacología , Adulto Joven
20.
Med Microbiol Immunol ; 209(6): 669-680, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32880037

RESUMEN

The ability of bacteria to aggregate and form biofilms impairs phagocytosis by polymorphonuclear leukocytes (PMNs). The aim of this study was to examine if the size of aggregates is critical for successful phagocytosis and how bacterial biofilms evade phagocytosis. We investigated the live interaction between PMNs and Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Staphylococcus epidermidis using confocal scanning laser microscopy. Aggregate size significantly affected phagocytosis outcome and larger aggregates were less likely to be phagocytized. Aggregates of S. epidermidis were also less likely to be phagocytized than equally-sized aggregates of the other three species. We found that only aggregates of approx. 5 µm diameter or smaller were consistently phagocytosed. We demonstrate that planktonic and aggregated cells of all four species significantly reduced the viability of PMNs after 4 h of incubation. Our results indicate that larger bacterial aggregates are less likely to be phagocytosed by PMNs and we propose that, if the aggregates become too large, circulating PMNs may not be able to phagocytose them quickly enough, which may lead to chronic infection.


Asunto(s)
Biopelículas , Escherichia coli/fisiología , Neutrófilos/fisiología , Fagocitosis , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/fisiología , Staphylococcus epidermidis/fisiología , Escherichia coli/ultraestructura , Humanos , Pseudomonas aeruginosa/ultraestructura , Piel/microbiología , Staphylococcus aureus/ultraestructura , Staphylococcus epidermidis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA