Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genet Med ; 23(5): 888-899, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33597769

RESUMEN

PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants. METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing. RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies. CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.


Asunto(s)
Trastorno del Espectro Autista , Encefalopatías , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Encéfalo , Homólogo 4 de la Proteína Discs Large/genética , Humanos , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo
2.
Oncogene ; 35(37): 4836-45, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876210

RESUMEN

Rad54 and Mus81 mammalian proteins physically interact and are important for the homologous recombination DNA repair pathway; however, their functional interactions in vivo are poorly defined. Here, we show that combinatorial loss of Rad54 and Mus81 results in hypersensitivity to DNA-damaging agents, defects on both the homologous recombination and non-homologous DNA end joining repair pathways and reduced fertility. We also observed that while Mus81 deficiency diminished the cleavage of common fragile sites, very strikingly, Rad54 loss impaired this cleavage to even a greater extent. The inefficient repair of DNA double-strand breaks (DSBs) in Rad54(-/-)Mus81(-/-) cells was accompanied by elevated levels of chromosome missegregation and cell death. Perhaps as a consequence, tumor incidence in Rad54(-/-)Mus81(-/-) mice remained comparable to that in Mus81(-/-) mice. Our study highlights the importance of the cooperation between Rad54 and Mus81 for mediating DNA DSB repair and restraining chromosome missegregation.


Asunto(s)
ADN Helicasas/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Neoplasias/genética , Proteínas Nucleares/genética , Animales , Cromosomas/genética , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Recombinación Homóloga/genética , Humanos , Ratones , Ratones Noqueados , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA