Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 640
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 18(6): 654-664, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28414311

RESUMEN

In obesity, inflammation of white adipose tissue (AT) is associated with diminished generation of beige adipocytes ('beige adipogenesis'), a thermogenic and energy-dissipating function mediated by beige adipocytes that express the uncoupling protein UCP1. Here we delineated an inflammation-driven inhibitory mechanism of beige adipogenesis in obesity that required direct adhesive interactions between macrophages and adipocytes mediated by the integrin α4 and its counter-receptor VCAM-1, respectively; expression of the latter was upregulated in obesity. This adhesive interaction reciprocally and concomitantly modulated inflammatory activation of macrophages and downregulation of UCP1 expression dependent on the kinase Erk in adipocytes. Genetic or pharmacological inactivation of the integrin α4 in mice resulted in elevated expression of UCP1 and beige adipogenesis of subcutaneous AT in obesity. Our findings, established in both mouse systems and human systems, reveal a self-sustained cycle of inflammation-driven impairment of beige adipogenesis in obesity.


Asunto(s)
Adipocitos Beige , Adipogénesis/inmunología , Tejido Adiposo Blanco/inmunología , Diferenciación Celular/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Obesidad/inmunología , Células 3T3-L1 , Adipocitos/inmunología , Adipocitos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Adhesión Celular/inmunología , Dieta Alta en Grasa , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Retroalimentación , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Integrina alfa4/genética , Macrófagos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Monocitos/inmunología , Obesidad/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Grasa Subcutánea , Linfocitos T/inmunología , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Adulto Joven
2.
Cell ; 158(1): 41-53, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995977

RESUMEN

A hallmark of type 2 diabetes mellitus (T2DM) is the development of pancreatic ß cell failure, which results in insulinopenia and hyperglycemia. We show that the adipokine adipsin has a beneficial role in maintaining ß cell function. Animals genetically lacking adipsin have glucose intolerance due to insulinopenia; isolated islets from these mice have reduced glucose-stimulated insulin secretion. Replenishment of adipsin to diabetic mice treated hyperglycemia by boosting insulin secretion. We identify C3a, a peptide generated by adipsin, as a potent insulin secretagogue and show that the C3a receptor is required for these beneficial effects of adipsin. C3a acts on islets by augmenting ATP levels, respiration, and cytosolic free Ca(2+). Finally, we demonstrate that T2DM patients with ß cell failure are deficient in adipsin. These findings indicate that the adipsin/C3a pathway connects adipocyte function to ß cell physiology, and manipulation of this molecular switch may serve as a therapy in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Tejido Adiposo/metabolismo , Animales , Complemento C3a/metabolismo , Factor D del Complemento/genética , Factor D del Complemento/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Dieta Alta en Grasa , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Insulina/metabolismo , Secreción de Insulina , Ratones
3.
Cell ; 156(1-2): 343-58, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439387

RESUMEN

Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleótido Simple , Animales , Línea Celular , Células Cultivadas , Secuencia Conservada , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/metabolismo , Humanos , Resistencia a la Insulina , PPAR gamma/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
4.
Immunity ; 50(5): 1232-1248.e14, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31027998

RESUMEN

Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. Conditional deletion of Hpgd in mouse Treg cells resulted in the accumulation of functionally impaired Treg cells specifically in VAT, causing local inflammation and systemic insulin resistance. Consistent with this mechanism, humans with type 2 diabetes showed decreased HPGD expression in Treg cells. These data indicate that HPGD-mediated suppression is a tissue- and context-dependent suppressive mechanism used by Treg cells to maintain adipose tissue homeostasis.


Asunto(s)
Dinoprostona/análogos & derivados , Dinoprostona/metabolismo , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Grasa Intraabdominal/inmunología , Linfocitos T Reguladores/enzimología , Linfocitos T Reguladores/inmunología , Células 3T3 , Animales , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Células HEK293 , Homeostasis/inmunología , Humanos , Hidroxiprostaglandina Deshidrogenasas/genética , Resistencia a la Insulina/genética , Grasa Intraabdominal/citología , Células Jurkat , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Noqueados , Factor de Transcripción STAT5/metabolismo
5.
Nature ; 609(7926): 361-368, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35790189

RESUMEN

Brown adipose tissue (BAT) dissipates energy1,2 and promotes cardiometabolic health3. Loss of BAT during obesity and ageing is a principal hurdle for BAT-centred obesity therapies, but not much is known about BAT apoptosis. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. This apoptotic secretome enhances expression of the thermogenic programme in healthy adipocytes. This effect is mediated by the purine inosine that stimulates energy expenditure in brown adipocytes by the cyclic adenosine monophosphate-protein kinase A signalling pathway. Treatment of mice with inosine increased BAT-dependent energy expenditure and induced 'browning' of white adipose tissue. Mechanistically, the equilibrative nucleoside transporter 1 (ENT1, SLC29A1) regulates inosine levels in BAT: ENT1-deficiency increases extracellular inosine levels and consequently enhances thermogenic adipocyte differentiation. In mice, pharmacological inhibition of ENT1 as well as global and adipose-specific ablation enhanced BAT activity and counteracted diet-induced obesity, respectively. In human brown adipocytes, knockdown or blockade of ENT1 increased extracellular inosine, which enhanced thermogenic capacity. Conversely, high ENT1 levels correlated with lower expression of the thermogenic marker UCP1 in human adipose tissues. Finally, the Ile216Thr loss of function mutation in human ENT1 was associated with significantly lower body mass index and 59% lower odds of obesity for individuals carrying the Thr variant. Our data identify inosine as a metabolite released during apoptosis with a 'replace me' signalling function that regulates thermogenic fat and counteracts obesity.


Asunto(s)
Adipocitos Marrones , Tejido Adiposo Pardo , Metabolismo Energético , Inosina , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Tranportador Equilibrativo 1 de Nucleósido/antagonistas & inhibidores , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Humanos , Inosina/metabolismo , Inosina/farmacología , Ratones , Obesidad/genética , Obesidad/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/metabolismo
6.
Am J Hum Genet ; 110(6): 998-1007, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207645

RESUMEN

While common obesity accounts for an increasing global health burden, its monogenic forms have taught us underlying mechanisms via more than 20 single-gene disorders. Among these, the most common mechanism is central nervous system dysregulation of food intake and satiety, often accompanied by neurodevelopmental delay (NDD) and autism spectrum disorder. In a family with syndromic obesity, we identified a monoallelic truncating variant in POU3F2 (alias BRN2) encoding a neural transcription factor, which has previously been suggested as a driver of obesity and NDD in individuals with the 6q16.1 deletion. In an international collaboration, we identified ultra-rare truncating and missense variants in another ten individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity. Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperphagia during childhood. Except for a variant leading to early truncation of the protein, identified variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promotor activation. In a cohort with common non-syndromic obesity, we independently observed a negative correlation of POU3F2 gene expression with BMI, suggesting a role beyond monogenic obesity. In summary, we propose deleterious intragenic variants of POU3F2 to cause transcriptional dysregulation associated with hyperphagic obesity of adolescent onset with variable NDD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Síndrome de Prader-Willi , Adolescente , Humanos , Trastorno del Espectro Autista/genética , Hiperfagia/genética , Hiperfagia/complicaciones , Trastornos del Neurodesarrollo/genética , Obesidad/complicaciones , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/genética , Proteínas
7.
Hepatology ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537153

RESUMEN

BACKGROUND AND AIMS: We demonstrated in the randomized 18-month DIRECT PLUS trial (n = 294) that a Mediterranean (MED) diet, supplemented with polyphenol-rich Mankai duckweed, green tea, and walnuts and restricted in red/processed meat, caused substantial intrahepatic fat (IHF%) loss compared with 2 other healthy diets, reducing NAFLD by half, regardless of similar weight loss. Here, we investigated the baseline proteomic profile associated with IHF% and the changes in proteomics associated with IHF% changes induced by lifestyle intervention. APPROACH AND RESULTS: We calculated IHF% by proton magnetic resonance spectroscopy (normal IHF% <5% and abnormal IHF% ≥5%). We assayed baseline and 18-month samples for 95 proteomic biomarkers.Participants (age = 51.3 ± 10.8 y; 89% men; and body mass index = 31.3 ± 3.9 kg/m 2 ) had an 89.8% 18-month retention rate; 83% had eligible follow-up proteomics measurements, and 78% had follow-up proton magnetic resonance spectroscopy. At baseline, 39 candidate proteins were significantly associated with IHF% (false discovery rate <0.05), mostly related to immune function pathways (eg, hydroxyacid oxidase 1). An IHF% prediction based on the DIRECT PLUS by combined model ( R2 = 0.47, root mean square error = 1.05) successfully predicted IHF% ( R2 = 0.53) during testing and was stronger than separately inputting proteins/traditional markers ( R2 = 0.43/0.44). The 18-month lifestyle intervention induced changes in 18 of the 39 candidate proteins, which were significantly associated with IHF% change, with proteins related to metabolism, extracellular matrix remodeling, and immune function pathways. Thrombospondin-2 protein change was higher in the green-MED compared to the MED group, beyond weight and IHF% loss ( p = 0.01). Protein principal component analysis revealed differences in the third principal component time distinct interactions across abnormal/normal IHF% trajectory combinations; p < 0.05 for all). CONCLUSIONS: Our findings suggest novel proteomic signatures that may indicate MRI-assessed IHF state and changes during lifestyle intervention. Specifically, carbonic anhydrase 5A, hydroxyacid oxidase 1, and thrombospondin-2 protein changes are independently associated with IHF% change, and thrombospondin-2 protein change is greater in the green-MED/high polyphenols diet.

8.
EMBO Rep ; 24(10): e57600, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37671834

RESUMEN

Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a human-specific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesity-linked regulator of adipocyte plasticity and mitochondrial function in humans.

9.
Proc Natl Acad Sci U S A ; 119(40): e2110374119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161905

RESUMEN

Lipodystrophy syndromes (LDs) are characterized by loss of adipose tissue, metabolic complications such as dyslipidemia, insulin resistance, and fatty liver disease, as well as accelerated atherosclerosis. As a result of adipose tissue deficiency, the systemic concentration of the adipokine leptin is reduced. A current promising therapeutic option for patients with LD is treatment with recombinant leptin (metreleptin), resulting in reduced risk of mortality. Here, we investigate the effects of leptin on endothelial to mesenchymal transition (EndMT), which impair the functional properties of endothelial cells and promotes atherogenesis in LD. Leptin treatment reduced inflammation and TGF-ß2-induced expression of mesenchymal genes and prevented impairment of endothelial barrier function. Treatment of lipodystrophic- and atherosclerosis-prone animals (Ldlr-/-; aP2-nSrebp1c-Tg) with leptin reduced macrophage accumulation in atherosclerotic lesions, vascular plaque protrusion, and the number of endothelial cells with mesenchymal gene expression, confirming a reduction in EndMT in LD after leptin treatment. Treatment with leptin inhibited LD-mediated induction of the proatherosclerotic cytokine growth/differentiation factor 15 (GDF15). Inhibition of GDF15 reduced EndMT induction triggered by plasma from patients with LD. Our study reveals that in addition to the effects on adipose tissue function, leptin treatment exerts beneficial effects protecting endothelial function and identity in LD by reducing GDF15.


Asunto(s)
Células Endoteliales , Transición Epitelial-Mesenquimal , Factor 15 de Diferenciación de Crecimiento , Leptina , Lipodistrofia , Animales , Aterosclerosis/genética , Células Endoteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Leptina/farmacología , Leptina/uso terapéutico , Lipodistrofia/tratamiento farmacológico , Lipodistrofia/genética , Ratones , Factor de Crecimiento Transformador beta2/metabolismo
10.
Eur Heart J ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39210706

RESUMEN

The global prevalence of obesity has more than doubled over the past four decades, currently affecting more than a billion individuals. Beyond its recognition as a high-risk condition that is causally linked to many chronic illnesses, obesity has been declared a disease per se that results in impaired quality of life and reduced life expectancy. Notably, two-thirds of obesity-related excess mortality is attributable to cardiovascular disease. Despite the increasingly appreciated link between obesity and a broad range of cardiovascular disease manifestations including atherosclerotic disease, heart failure, thromboembolic disease, arrhythmias, and sudden cardiac death, obesity has been underrecognized and sub-optimally addressed compared with other modifiable cardiovascular risk factors. In the view of major repercussions of the obesity epidemic on public health, attention has focused on population-based and personalized approaches to prevent excess weight gain and maintain a healthy body weight from early childhood and throughout adult life, as well as on comprehensive weight loss interventions for persons with established obesity. This clinical consensus statement by the European Society of Cardiology discusses current evidence on the epidemiology and aetiology of obesity; the interplay between obesity, cardiovascular risk factors and cardiac conditions; the clinical management of patients with cardiac disease and obesity; and weight loss strategies including lifestyle changes, interventional procedures, and anti-obesity medications with particular focus on their impact on cardiometabolic risk and cardiac outcomes. The document aims to raise awareness on obesity as a major risk factor and provide guidance for implementing evidence-based practices for its prevention and optimal management within the context of primary and secondary cardiovascular disease prevention.

11.
Diabetologia ; 67(3): 470-482, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38095657

RESUMEN

AIMS/HYPOTHESIS: The aim of this study was to assess the dose-response effects of the subcutaneous glucagon receptor/glucagon-like peptide-1 receptor dual agonist survodutide (BI 456906) on HbA1c levels and bodyweight reduction. METHODS: This Phase II, multicentre, randomised, double-blind, parallel-group, placebo-controlled study, conducted in clinical research centres, assessed survodutide in participants aged 18-75 years with type 2 diabetes, an HbA1c level of 53-86 mmol/mol (7.0-10.0%) and a BMI of 25-50 kg/m2 on a background of metformin therapy. Participants were randomised via interactive response technology to receive survodutide (up to 0.3, 0.9, 1.8 or 2.7 mg once weekly [qw; dose group (DG) 1-4, respectively] or 1.2 or 1.8 mg twice weekly [DG 5 and 6, respectively]), placebo or semaglutide (up to 1.0 mg qw). Participants and all those involved in the trial conduct/analysis were blinded; the semaglutide arm was open-label. The primary endpoint was absolute change from baseline in HbA1c after 16 weeks' treatment. The key secondary endpoint was relative change from baseline in bodyweight after 16 weeks' treatment. RESULTS: A total of 413 participants were randomised (DG1, n=50; DG2, n=50; DG3, n=52; DG4, n=50; DG5, n=51; DG6, n=50; semaglutide, n=50; placebo, n=60). The full analysis set comprised 411 treated participants (DG6, n=49; placebo, n=59). Adjusted mean (95% CI) HbA1c decreased from baseline (mean ± SD 64.7±9.2 mmol/mol [8.07±0.84%] after 16 weeks' treatment: DG1 (n=41), -9.92 mmol/mol (-12.27, -7.56; -0.91% [-1.12, -0.69]); DG2 (n=46), -15.95 mmol/mol (-18.27, -13.63; -1.46% [-1.67, -1.25]); DG3 (n=36), -18.72 mmol/mol (-21.15, -16.29; -1.71% [-1.94, -1.49]); DG4 (n=33), -17.01 mmol/mol (-19.59, -14.43; -1.56% [-1.79, -1.32]); DG5 (n=44), -17.84 mmol/mol (-20.18, -15.51; -1.63% [-1.85, -1.42]); DG6 (n=36), -18.38 mmol/mol (-20.90, -15.87; -1.68% [-1.91, -1.45]). The mean reduction in HbA1c was similar with low-dose survodutide (DG2: -15.95 mmol/mol [-1.46%]; n=46) and semaglutide (-16.07 mmol/mol [-1.47%]; n=45). Mean (95% CI) bodyweight decreased dose-dependently up to -8.7% (-10.1, -7.3; DG6, n=37); survodutide ≥1.8 mg qw produced greater bodyweight reductions than semaglutide (-5.3% [-6.6, -4.1]; n=45). Adverse events (AEs) were reported for 77.8% of survodutide-treated participants (mainly gastrointestinal), 52.5% receiving placebo and 52.0% receiving semaglutide. CONCLUSIONS/INTERPRETATION: Survodutide reduced HbA1c levels and bodyweight after 16 weeks' treatment in participants with type 2 diabetes. Dose-related gastrointestinal AEs could be mitigated with slower dose escalations. TRIAL REGISTRATION: ClinicalTrials.gov NCT04153929 and EudraCT 2019-002390-60. FUNDING: Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptidos Similares al Glucagón , Péptidos , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inducido químicamente , Hipoglucemiantes/efectos adversos , Glucagón , Agonistas Receptor de Péptidos Similares al Glucagón , Resultado del Tratamiento , Péptido 1 Similar al Glucagón , Método Doble Ciego
12.
Diabetologia ; 67(5): 928-939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431705

RESUMEN

AIMS/HYPOTHESIS: As the prevalence of insulin resistance and glucose intolerance is increasing throughout the world, diabetes-induced eye diseases are a global health burden. We aim to identify distinct optical bands which are closely related to insulin and glucose metabolism, using non-invasive, high-resolution spectral domain optical coherence tomography (SD-OCT) in a large, population-based dataset. METHODS: The LIFE-Adult-Study randomly selected 10,000 participants from the population registry of Leipzig, Germany. Cross-sectional, standardised phenotyping included the assessment of various metabolic risk markers and ocular imaging, such as SD-OCT-derived thicknesses of ten optical bands of the retina. Global and Early Treatment Diabetic Retinopathy Study (ETDRS) subfield-specific optical retinal layer thicknesses were investigated in 7384 healthy eyes of 7384 participants from the LIFE-Adult-Study stratified by normal glucose tolerance, prediabetes (impaired fasting glucose and/or impaired glucose tolerance and/or HbA1c 5.7-6.4% [39-47 mmol/mol]) and diabetes. The association of optical retinal band characteristics with different indices of glucose tolerance (e.g. fasting glucose, area under the glucose curve), insulin resistance (e.g. HOMA2-IR, triglyceride glucose index), or insulin sensitivity (e.g. estimated glucose disposal rate [eGDR], Stumvoll metabolic clearance rate) was determined using multivariable linear regression analyses for the individual markers adjusted for age, sex and refraction. Various sensitivity analyses were performed to validate the observed findings. RESULTS: In the study cohort, nine out of ten optical bands of the retina showed significant sex- and glucose tolerance-dependent differences in band thicknesses. Multivariable linear regression analyses revealed a significant, independent, and inverse association between markers of glucose intolerance and insulin resistance (e.g. HOMA2-IR) with the thickness of the optical bands representing the anatomical retinal outer nuclear layer (ONL, standardised ß=-0.096; p<0.001 for HOMA2-IR) and myoid zone (MZ; ß=-0.096; p<0.001 for HOMA2-IR) of the photoreceptors. Conversely, markers of insulin sensitivity (e.g. eGDR) positively and independently associated with ONL (ß=0.090; p<0.001 for eGDR) and MZ (ß=0.133; p<0.001 for eGDR) band thicknesses. These global associations were confirmed in ETDRS subfield-specific analyses. Sensitivity analyses further validated our findings when physical activity, neuroanatomical cell/tissue types and ETDRS subfield categories were investigated after stratifying the cohort by glucose homeostasis. CONCLUSIONS/INTERPRETATION: An impaired glucose homeostasis associates with a thinning of the optical bands of retinal ONL and photoreceptor MZ. Changes in ONL and MZ thicknesses might predict early metabolic retinal alterations in diabetes.


Asunto(s)
Retinopatía Diabética , Intolerancia a la Glucosa , Resistencia a la Insulina , Estado Prediabético , Adulto , Humanos , Estudios Transversales , Retina , Glucosa
13.
Hum Mol Genet ; 31(23): 4019-4033, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35796564

RESUMEN

To nominate novel disease genes for obesity and type 2 diabetes (T2D), we recently generated two mouse backcross populations of the T2D-susceptible New Zealand Obese (NZO/HI) mouse strain and two genetically different, lean and T2D-resistant strains, 129P2/OlaHsd and C3HeB/FeJ. Comparative linkage analysis of our two female backcross populations identified seven novel body fat-associated quantitative trait loci (QTL). Only the locus Nbw14 (NZO body weight on chromosome 14) showed linkage to obesity-related traits in both backcross populations, indicating that the causal gene variant is likely specific for the NZO strain as NZO allele carriers in both crosses displayed elevated body weight and fat mass. To identify candidate genes for Nbw14, we used a combined approach of gene expression and haplotype analysis to filter for NZO-specific gene variants in gonadal white adipose tissue, defined as the main QTL-target tissue. Only two genes, Arl11 and Sgcg, fulfilled our candidate criteria. In addition, expression QTL analysis revealed cis-signals for both genes within the Nbw14 locus. Moreover, retroviral overexpression of Sgcg in 3T3-L1 adipocytes resulted in increased insulin-stimulated glucose uptake. In humans, mRNA levels of SGCG correlated with body mass index and body fat mass exclusively in diabetic subjects, suggesting that SGCG may present a novel marker for metabolically unhealthy obesity. In conclusion, our comparative-cross analysis could substantially improve the mapping resolution of the obesity locus Nbw14. Future studies will throw light on the mechanism by which Sgcg may protect from the development of obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Humanos , Femenino , Animales , Diabetes Mellitus Tipo 2/genética , Mapeo Cromosómico , Genes Modificadores , Obesidad/genética , Obesidad/metabolismo , Peso Corporal/genética , Ratones Endogámicos , Genómica , Factores de Ribosilacion-ADP/genética , Sarcoglicanos/metabolismo
14.
J Hepatol ; 81(3): 479-491, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38599383

RESUMEN

BACKGROUND & AIMS: Endoplasmic reticulum (ER) membrane protein complex subunit 10 (EMC10) has been implicated in obesity. Here we investigated the roles of the two isoforms of EMC10, including a secreted isoform (scEMC10) and an ER membrane-bound isoform (mEMC10), in metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: Manifold steatotic mouse models and HepG2 cells were employed to investigate the role of EMC10 in the regulation of hepatic PERK-eIF2α-ATF4 signaling and hepatosteatosis. The therapeutic effect of scEMC10-neutralizing antibody on mouse hepatosteatosis was explored. Associations of MASLD with serum scEMC10 and hepatic mEMC10 were determined in two cohorts of participants with MASLD. RESULTS: scEMC10 promoted, while mEMC10 suppressed, the activation of hepatic PERK-eIF2α-ATF4 signaling. Emc10 gene knockout exacerbated, while hepatic overexpression of mEMC10 ameliorated, hepatic ER stress and steatosis in mice challenged with either a methionine- and choline-deficient diet or tunicamycin, highlighting a direct, suppressive role of mEMC10 in MASLD via modulation of hepatic ER stress. Overexpression of scEMC10 promoted, whereas neutralization of circulating scEMC10 prevented, hepatosteatosis in mice with fatty liver, suggesting a role of scEMC10 in MASLD development. Clinically, serum scEMC10 was increased, while hepatic mEMC10 was decreased, in participants with MASLD. Correlative analysis indicated that serum scEMC10 positively, whereas hepatic mEMC10 negatively, correlated with liver fat content and serum ALT, AST, and GGT. CONCLUSIONS: These findings demonstrate a novel isoform-specific role for EMC10 in the pathogenesis of MASLD and identify the secreted isoform as a tractable therapeutic target for MASLD via antibody-based neutralization. IMPACT AND IMPLICATIONS: We have shown the role of EMC10 in the regulation of energy homeostasis and obesity. In this study, we determine the distinct roles of the two isoforms of EMC10 in the regulation of hepatic endoplasmic reticulum stress and steatosis in mice, and report on the associations of the different EMC10 isoforms with metabolic dysfunction-associated steatotic liver disease in humans. Our findings delineate a novel regulatory axis for hepatosteatosis and identify EMC10 as a modulator of the PERK-eIF2α-ATF4 signaling cascade that may be of broad physiological significance. Moreover, our pre-clinical and clinical studies provide evidence of the therapeutic potential of targeting scEMC10 in MASLD.


Asunto(s)
Factor de Transcripción Activador 4 , Estrés del Retículo Endoplásmico , Hígado Graso , Isoformas de Proteínas , Animales , Estrés del Retículo Endoplásmico/fisiología , Ratones , Humanos , Hígado Graso/metabolismo , Hígado Graso/etiología , Masculino , Isoformas de Proteínas/metabolismo , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Células Hep G2 , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , eIF-2 Quinasa/metabolismo , Transducción de Señal , Hígado/metabolismo , Hígado/patología , Ratones Noqueados , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino
15.
Hum Brain Mapp ; 45(3): e26595, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38375968

RESUMEN

Obesity is associated with negative effects on the brain. We exploit Artificial Intelligence (AI) tools to explore whether differences in clinical measurements following lifestyle interventions in overweight population could be reflected in brain morphology. In the DIRECT-PLUS clinical trial, participants with criterion for metabolic syndrome underwent an 18-month lifestyle intervention. Structural brain MRIs were acquired before and after the intervention. We utilized an ensemble learning framework to predict Body-Mass Index (BMI) scores, which correspond to adiposity-related clinical measurements from brain MRIs. We revealed that patient-specific reduction in BMI predictions was associated with actual weight loss and was significantly higher in active diet groups compared to a control group. Moreover, explainable AI (XAI) maps highlighted brain regions contributing to BMI predictions that were distinct from regions associated with age prediction. Our DIRECT-PLUS analysis results imply that predicted BMI and its reduction are unique neural biomarkers for obesity-related brain modifications and weight loss.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Humanos , Índice de Masa Corporal , Encéfalo/diagnóstico por imagen , Estilo de Vida , Imagen por Resonancia Magnética , Obesidad/diagnóstico por imagen , Obesidad/terapia , Obesidad/complicaciones , Sobrepeso/diagnóstico por imagen , Sobrepeso/terapia , Pérdida de Peso
16.
Chembiochem ; 25(4): e202300550, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-37873910

RESUMEN

Diabetes mellitus, a metabolic disorder that is characterized by elevated blood glucose levels, is common throughout the world and its prevalence is steadily increasing. Early diagnosis and treatment are important to prevent acute complications and life-threatening long-term organ damage. Glycation sites in human serum albumin (HSA) are considered to be promising biomarkers of systemic glycemic status. This work aimed to develop a sensitive and clinically applicable ELISA for the quantification of glycation site Lys414 in HSA (HSAK414 ). The monoclonal antibodies (mAbs) were generated by immunizing mice with a glycated peptide. The established indirect ELISA based on mAb 50D8 (IgG1 isotype) yielded a limit of detection of 0.39 nmol/g HSA for HSAK414 with a linear dynamic range from 0.50 to 6.25 nmol/g glycated HSA. The inter- and intra-day assays with coefficients of variation less than 20 % indicated good assay performance and precision. Assay evaluation was based on plasma samples from diabetic and non-diabetic subjects with known HSAK414 glycation levels previously determined by LC-MS. Both data sets correlated very well. In conclusion, the generated mAb 50D8 and the established ELISA could be a valuable tool for the rapid quantitation of glycation site HSAK414 in plasma samples to evaluate its clinical relevance.


Asunto(s)
Diabetes Mellitus , Albúmina Sérica , Humanos , Animales , Ratones , Albúmina Sérica/análisis , Lisina , Anticuerpos Monoclonales , Reacción de Maillard , Albúmina Sérica Humana/metabolismo , Ensayo de Inmunoadsorción Enzimática
17.
Cardiovasc Diabetol ; 23(1): 44, 2024 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281946

RESUMEN

BACKGROUND: We aimed to explore the associations between thigh muscle fat density and vascular events. METHODS: A total of 3,595 adults (mean age, 57.2 years; women, 1,715 [47.7%]) without baseline cardiovascular events from the Korean Atherosclerosis Study-2 were included. Muscle and fat area at the mid-thigh level were measured by computed tomography (CT) using the following Hounsfield Unit range: 0-30 for low density muscle (LDM); 31-100 for normal density muscle (NDM); and - 250 to - 50 for fat. RESULTS: During a median follow-up period of 11.8 (4.3-13.9) years, vascular events occurred in 11.6% of men and 5.9% of women. Individuals with vascular events had a larger LDM area (men: 48.8 ± 15.5 cm2 vs. 44.6 ± 14.5 cm2; women: 39.4 ± 13.2 cm2 vs. 35.0 ± 11.8 cm2, both P < 0.001) compared with those who did not have vascular events during the follow-up of at least 5 years. The LDM/NDM ratio was also independently associated with vascular events after adjusting for cardiometabolic risk factors. Moreover, the LDM/NDM ratio improved the prognostic value for vascular events when added to conventional risk factors. CONCLUSIONS: The current study suggests that a higher thigh muscle fat infiltration is associated with an increased risk of developing vascular events among Korean adults.


Asunto(s)
Músculo Esquelético , Muslo , Masculino , Adulto , Humanos , Femenino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Factores de Riesgo , Tomografía Computarizada por Rayos X , República de Corea/epidemiología
18.
Diabetes Obes Metab ; 26(9): 4087-4099, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39014526

RESUMEN

AIM: To compare the effectiveness of strength versus endurance training on reducing visceral fat in individuals with obesity. MATERIALS AND METHODS: For the STrength versus ENdurance (STEN) 24-month randomized clinical trial, we assigned 239 participants with abdominal obesity to either strength or endurance training (two to three times a week, 60 min/training session) in addition to standard nutritional counselling to promote a healthy diet. Changes in abdominal visceral adipose tissue (VAT) area quantified by magnetic resonance imaging after 12 months were defined as a primary endpoint. RESULTS: Participants (aged 44 years, 74% women, body mass index: 37 kg/m2, mean VAT volume: 4050 cm3) had an approximately 50% retention rate and a 30% good training programme adherence at 12 months. There was no difference between strength and endurance training in VAT volume dynamics after 12 and 24 months (p = .13). Only in the good adherence group did we find a trend for reduced VAT volume in both training regimens. Independently of the exercise programme, there was a continuous trend for moderate loss of abdominal subcutaneous AT volume, body fat mass, body mass index and improved parameters of insulin sensitivity. Although parameters of physical fitness improved upon both exercise interventions, the dynamics of resting energy expenditure, glucose and lipid metabolism parameters were not different between the intervention groups and did not significantly improve during the 2-year trial (p > .05). CONCLUSIONS: Despite heterogeneous individual training responses, strength and endurance training neither affected VAT volume nor key secondary endpoints differently.


Asunto(s)
Entrenamiento Aeróbico , Grasa Intraabdominal , Obesidad Abdominal , Entrenamiento de Fuerza , Humanos , Femenino , Masculino , Grasa Intraabdominal/diagnóstico por imagen , Adulto , Entrenamiento Aeróbico/métodos , Entrenamiento de Fuerza/métodos , Persona de Mediana Edad , Obesidad Abdominal/terapia , Obesidad Abdominal/fisiopatología , Índice de Masa Corporal , Imagen por Resonancia Magnética , Resultado del Tratamiento , Metabolismo Energético/fisiología , Resistencia a la Insulina/fisiología , Pérdida de Peso/fisiología
19.
Diabetes Obes Metab ; 26(6): 2054-2068, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38618969

RESUMEN

AIMS: Taste modifies eating behaviour, impacting body weight and potentially obesity development. The Obese Taste Bud (OTB) Study is a prospective cohort study launched in 2020 at the University of Leipzig Obesity Centre in cooperation with the HI-MAG Institute. OTB will test the hypothesis that taste cell homeostasis and taste perception are linked to obesity. Here, we provide the study design, data collection process and baseline characteristics. MATERIALS AND METHODS: Participants presenting overweight, obesity or normal weight undergo taste and smell tests, anthropometric, and taste bud density (TBD) assessment on Day 1. Information on physical and mental health, eating behaviour, physical activity, and dental hygiene are obtained, while biomaterial (saliva, tongue swap, blood) is collected in the fasted state. Further blood samples are taken during a glucose tolerance test. A stool sample is collected at home prior to Day 2, on which a taste bud biopsy follows dental examination. A subsample undergoes functional magnetic resonance imaging while exposed to eating-related cognitive tasks. Follow-up investigations after conventional weight loss interventions and bariatric surgery will be included. RESULTS: Initial results show that glycated haemoglobin levels and age are negatively associated with TBD, while an unfavourable metabolic profile, current dieting, and vegan diet are related to taste perception. Olfactory function negatively correlates with age and high-density lipoprotein cholesterol. CONCLUSION: Initial findings suggest that metabolic alterations are relevant for taste and smell function and TBD. By combining omics data from collected biomaterial with physiological, metabolic and psychological data related to taste perception and eating behaviour, the OTB study aims to strengthen our understanding of taste perception in obesity.


Asunto(s)
Obesidad , Papilas Gustativas , Percepción del Gusto , Humanos , Obesidad/complicaciones , Estudios Prospectivos , Femenino , Masculino , Adulto , Percepción del Gusto/fisiología , Persona de Mediana Edad , Gusto/fisiología , Proyectos de Investigación , Conducta Alimentaria/fisiología , Conducta Alimentaria/psicología , Adulto Joven
20.
Diabetes Obes Metab ; 26(10): 4713-4723, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134456

RESUMEN

AIM: To explore the effect of Mankai, a cultivated aquatic duckweed green plant, on postprandial glucose (PG) excursions in type 2 diabetes (T2D). METHODS: In a 4-week, randomized crossover-controlled trial, we enrolled 45 adults with T2D (HbA1c range: 6.5%-8.5%) from two sites in Israel. Participants were randomized to drink Mankai (200 mL of raw-fresh-aquatic plant + 100 mL of water, 40 kcal, ~10 g of dry matter equivalent) or water (300 mL) following dinner, for 2 weeks each, with a 4-day washout interval, without dietary, physical activity or pharmacotherapy alterations. We used continuous glucose monitoring (CGM) devices. RESULTS: Forty patients (adherence rate = 88.5%; 743 person-intervention-days, 68.9% men, age = 64 years, HbA1c = 6.8%) completed the study with a consistent diet and complete CGM reads. Only two-thirds of the individuals responded beneficially to Mankai. Overall, Mankai significantly lowered the PG peak by 19.3% (∆peak = 24.3 ± 16.8 vs. 30.1 ± 18.5 mg/dL; P < .001) and delayed the time-to-peak by 20.0% (112.5 [interquartile range: 75-135] vs. 90 [60-105] min; P < .001) compared with water. The PG incline and decline slopes were shallower following postdinner Mankai (incline slope: 16.8 vs. water: 29.9 mg/[dL h]; P < .001; decline slope: -6.1 vs. water: -7.9 mg/[dL h]; P < .01). Mean postprandial net incremental area-under-the-glucose-curve was lowered by 20.1% with Mankai compared with water (P = .03). Results were consistent across several sensitivity and subgroup analyses, including across antidiabetic pharmacotherapy treatment groups. Within 2 weeks, the triglycerides/high-density lipoprotein cholesterol ratio in the Mankai group (-0.5 ± 1.3) decreased versus water (+0.3 ± 1.5, P = .05). CONCLUSIONS: Mankai consumption may mitigate the PG response in people with T2D with an ~20% improvement in glycaemic values. These findings provide case-study evidence for plant-based treatments in T2D to complement a healthy lifestyle and pharmacotherapy.


Asunto(s)
Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 2 , Periodo Posprandial , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/dietoterapia , Masculino , Persona de Mediana Edad , Glucemia/metabolismo , Glucemia/análisis , Femenino , Anciano , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Araceae , Israel/epidemiología , Automonitorización de la Glucosa Sanguínea , Control Glucémico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA