Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Rev Mol Cell Biol ; 22(12): 815-833, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400841

RESUMEN

Precise control of gene expression is fundamental to cell function and development. Although ultimately gene expression relies on DNA-binding transcription factors to guide the activity of the transcription machinery to genes, it has also become clear that chromatin and histone post-translational modification have fundamental roles in gene regulation. Polycomb repressive complexes represent a paradigm of chromatin-based gene regulation in animals. The Polycomb repressive system comprises two central protein complexes, Polycomb repressive complex 1 (PRC1) and PRC2, which are essential for normal gene regulation and development. Our early understanding of Polycomb function relied on studies in simple model organisms, but more recently it has become apparent that this system has expanded and diverged in mammals. Detailed studies are now uncovering the molecular mechanisms that enable mammalian PRC1 and PRC2 to identify their target sites in the genome, communicate through feedback mechanisms to create Polycomb chromatin domains and control transcription to regulate gene expression. In this Review, we discuss and contextualize the emerging principles that define how this fascinating chromatin-based system regulates gene expression in mammals.


Asunto(s)
Regulación de la Expresión Génica/genética , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Cromatina/química , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Metilación , Complejo Represivo Polycomb 1/química , Complejo Represivo Polycomb 2/química , Procesamiento Proteico-Postraduccional , Transcripción Genética , Ubiquitinación
2.
Cell ; 157(6): 1445-1459, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24856970

RESUMEN

Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteínas F-Box/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Desarrollo Óseo , Islas de CpG , Proteínas F-Box/química , Proteínas F-Box/genética , Genes Letales , Estudio de Asociación del Genoma Completo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/genética , Ratones , Estructura Terciaria de Proteína
3.
Genes Dev ; 35(5-6): 301-303, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649160

RESUMEN

The Polycomb repressive system functions through chromatin to regulate gene expression and development. In this issue of Genes & Development, Cohen and colleagues (pp. 354-366) use the developing mouse epidermis as a model system to show that the two central Polycomb repressive complexes, PRC1 and PRC2, have autonomous yet overlapping functions in repressing Polycomb target genes. They show that this cooperation enables the stable repression of nonepidermal transcription factors that would otherwise compromise epidermal cell identity and disrupt normal skin development.


Asunto(s)
Epidermis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/genética , Animales , Ratones
4.
Genes Dev ; 35(9-10): 749-770, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888563

RESUMEN

Histone-modifying systems play fundamental roles in gene regulation and the development of multicellular organisms. Histone modifications that are enriched at gene regulatory elements have been heavily studied, but the function of modifications found more broadly throughout the genome remains poorly understood. This is exemplified by histone H2A monoubiquitylation (H2AK119ub1), which is enriched at Polycomb-repressed gene promoters but also covers the genome at lower levels. Here, using inducible genetic perturbations and quantitative genomics, we found that the BAP1 deubiquitylase plays an essential role in constraining H2AK119ub1 throughout the genome. Removal of BAP1 leads to pervasive genome-wide accumulation of H2AK119ub1, which causes widespread reductions in gene expression. We show that elevated H2AK119ub1 preferentially counteracts Ser5 phosphorylation on the C-terminal domain of RNA polymerase II at gene regulatory elements and causes reductions in transcription and transcription-associated histone modifications. Furthermore, failure to constrain pervasive H2AK119ub1 compromises Polycomb complex occupancy at a subset of Polycomb target genes, which leads to their derepression, providing a potential molecular rationale for why the BAP1 ortholog in Drosophila has been characterized as a Polycomb group gene. Together, these observations reveal that the transcriptional potential of the genome can be modulated by regulating the levels of a pervasive histone modification.


Asunto(s)
Regulación de la Expresión Génica/genética , Genoma/genética , Histonas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Animales , Línea Celular , Células HEK293 , Código de Histonas/genética , Histonas/genética , Humanos , Ratones , Células Madre Embrionarias de Ratones , Fosforilación/genética , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo
5.
Mol Cell ; 77(4): 857-874.e9, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31883950

RESUMEN

The Polycomb repressive system is an essential chromatin-based regulator of gene expression. Despite being extensively studied, how the Polycomb system selects its target genes is poorly understood, and whether its histone-modifying activities are required for transcriptional repression remains controversial. Here, we directly test the requirement for PRC1 catalytic activity in Polycomb system function. To achieve this, we develop a conditional mutation system in embryonic stem cells that completely removes PRC1 catalytic activity. Using this system, we demonstrate that catalysis by PRC1 drives Polycomb chromatin domain formation and long-range chromatin interactions. Furthermore, we show that variant PRC1 complexes with DNA-binding activities occupy target sites independently of PRC1 catalytic activity, providing a putative mechanism for Polycomb target site selection. Finally, we discover that Polycomb-mediated gene repression requires PRC1 catalytic activity. Together these discoveries provide compelling evidence that PRC1 catalysis is central to Polycomb system function and gene regulation.


Asunto(s)
Regulación de la Expresión Génica , Complejo Represivo Polycomb 1/metabolismo , Animales , Biocatálisis , Línea Celular , Cromatina/metabolismo , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Masculino , Ratones , Mutación Puntual , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 2/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Nat Rev Mol Cell Biol ; 16(11): 643-649, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26420232

RESUMEN

Polycomb group proteins are transcriptional repressors that are essential for normal gene regulation during development. Recent studies suggest that Polycomb repressive complexes (PRCs) recognize and are recruited to their genomic target sites through a range of different mechanisms, which involve transcription factors, CpG island elements and non-coding RNAs. Together with the realization that the interplay between PRC1 and PRC2 is more intricate than was previously appreciated, this has increased our understanding of the vertebrate Polycomb system at the molecular level.


Asunto(s)
Regulación de la Expresión Génica/genética , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Transcripción Genética/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Islas de CpG/genética , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Humanos , Ratones , ARN no Traducido/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
7.
Mol Cell ; 74(5): 1020-1036.e8, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31029541

RESUMEN

The Polycomb system modifies chromatin and plays an essential role in repressing gene expression to control normal mammalian development. However, the components and mechanisms that define how Polycomb protein complexes achieve this remain enigmatic. Here, we use combinatorial genetic perturbation coupled with quantitative genomics to discover the central determinants of Polycomb-mediated gene repression in mouse embryonic stem cells. We demonstrate that canonical Polycomb repressive complex 1 (PRC1), which mediates higher-order chromatin structures, contributes little to gene repression. Instead, we uncover an unexpectedly high degree of synergy between variant PRC1 complexes, which is fundamental to gene repression. We further demonstrate that variant PRC1 complexes are responsible for distinct pools of H2A monoubiquitylation that are associated with repression of Polycomb target genes and silencing during X chromosome inactivation. Together, these discoveries reveal a new variant PRC1-dependent logic for Polycomb-mediated gene repression.


Asunto(s)
Cromatina/genética , Genómica , Complejo Represivo Polycomb 1/genética , Inactivación del Cromosoma X/genética , Animales , Histonas/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Interferencia de ARN , Ubiquitinación/genética
8.
Genome Res ; 28(10): 1494-1507, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30154222

RESUMEN

Polycomb group (PcG) proteins are transcriptional repressors that play important roles in regulating gene expression during animal development. In vitro experiments have shown that PcG protein complexes can compact chromatin to limit the activity of chromatin remodeling enzymes and access of the transcriptional machinery to DNA. In fitting with these ideas, gene promoters associated with PcG proteins have been reported to be less accessible than other gene promoters. However, it remains largely untested in vivo whether PcG proteins define chromatin accessibility or other chromatin features. To address this important question, we examine the chromatin accessibility and nucleosome landscape at PcG protein-bound promoters in mouse embryonic stem cells using the assay for transposase accessible chromatin (ATAC)-seq. Combined with genetic ablation strategies, we unexpectedly discover that although PcG protein-occupied gene promoters exhibit reduced accessibility, this does not rely on PcG proteins. Instead, the Polycomb repressive complex 1 (PRC1) appears to play a unique role in driving elevated nucleosome occupancy and decreased nucleosomal spacing in Polycomb chromatin domains. Our new genome-scale observations argue, in contrast to the prevailing view, that PcG proteins do not significantly affect chromatin accessibility and highlight an underappreciated complexity in the relationship between chromatin accessibility, the nucleosome landscape, and PcG-mediated transcriptional repression.


Asunto(s)
Nucleosomas/genética , Complejo Represivo Polycomb 1/metabolismo , Regiones Promotoras Genéticas , Animales , Células Cultivadas , Técnicas de Inactivación de Genes , Ratones , Células Madre Embrionarias de Ratones , Nucleosomas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , ARN Polimerasa II/metabolismo , Análisis de Secuencia de ARN
9.
Mol Cell ; 38(2): 179-90, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20417597

RESUMEN

In higher eukaryotes, up to 70% of genes have high levels of nonmethylated cytosine/guanine base pairs (CpGs) surrounding promoters and gene regulatory units. These features, called CpG islands, were identified over 20 years ago, but there remains little mechanistic evidence to suggest how these enigmatic elements contribute to promoter function, except that they are refractory to epigenetic silencing by DNA methylation. Here we show that CpG islands directly recruit the H3K36-specific lysine demethylase enzyme KDM2A. Nucleation of KDM2A at these elements results in removal of H3K36 methylation, creating CpG island chromatin that is uniquely depleted of this modification. KDM2A utilizes a zinc finger CxxC (ZF-CxxC) domain that preferentially recognizes nonmethylated CpG DNA, and binding is blocked when the CpG DNA is methylated, thus constraining KDM2A to nonmethylated CpG islands. These data expose a straightforward mechanism through which KDM2A delineates a unique architecture that differentiates CpG island chromatin from bulk chromatin.


Asunto(s)
Islas de CpG/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box , Histonas/química , Humanos , Histona Demetilasas con Dominio de Jumonji , Lisina/química , Datos de Secuencia Molecular , Mutación , Oxidorreductasas N-Desmetilantes/química , Oxidorreductasas N-Desmetilantes/genética , Unión Proteica/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
10.
Nucleic Acids Res ; 40(4): e32, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22156374

RESUMEN

Across vertebrate genomes methylation of cytosine residues within the context of CpG dinucleotides is a pervasive epigenetic mark that can impact gene expression and has been implicated in various developmental and disease-associated processes. Several biochemical approaches exist to profile DNA methylation, but recently an alternative approach based on profiling non-methylated CpGs was developed. This technique, called CxxC affinity purification (CAP), uses a ZF-CxxC (CxxC) domain to specifically capture DNA containing clusters of non-methylated CpGs. Here we describe a new CAP approach, called biotinylated CAP (Bio-CAP), which eliminates the requirement for specialized equipment while dramatically improving and simplifying the CxxC-based DNA affinity purification. Importantly, this approach isolates non-methylated DNA in a manner that is directly proportional to the density of non-methylated CpGs, and discriminates non-methylated CpGs from both methylated and hydroxymethylated CpGs. Unlike conventional CAP, Bio-CAP can be applied to nanogram quantities of genomic DNA and in a magnetic format is amenable to efficient parallel processing of samples. Furthermore, Bio-CAP can be applied to genome-wide profiling of non-methylated DNA with relatively small amounts of input material. Therefore, Bio-CAP is a simple and streamlined approach for characterizing regions of the non-methylated DNA, whether at specific target regions or genome wide.


Asunto(s)
Cromatografía de Afinidad/métodos , Islas de CpG , Metilación de ADN , Biotinilación , ADN/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Dedos de Zinc
11.
Biochem Soc Trans ; 41(3): 727-40, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23697932

RESUMEN

Vertebrate DNA can be chemically modified by methylation of the 5 position of the cytosine base in the context of CpG dinucleotides. This modification creates a binding site for MBD (methyl-CpG-binding domain) proteins which target chromatin-modifying activities that are thought to contribute to transcriptional repression and maintain heterochromatic regions of the genome. In contrast with DNA methylation, which is found broadly across vertebrate genomes, non-methylated DNA is concentrated in regions known as CGIs (CpG islands). Recently, a family of proteins which encode a ZF-CxxC (zinc finger-CxxC) domain have been shown to specifically recognize non-methylated DNA and recruit chromatin-modifying activities to CGI elements. For example, CFP1 (CxxC finger protein 1), MLL (mixed lineage leukaemia protein), KDM (lysine demethylase) 2A and KDM2B regulate lysine methylation on histone tails, whereas TET (ten-eleven translocation) 1 and TET3 hydroxylate methylated cytosine bases. In the present review, we discuss the most recent advances in our understanding of how ZF-CxxC domain-containing proteins recognize non-methylated DNA and describe their role in chromatin modification at CGIs.


Asunto(s)
Cromatina/metabolismo , Islas de CpG/fisiología , Proteínas de Unión al ADN/fisiología , Secuencia de Aminoácidos , Islas de CpG/genética , ADN/metabolismo , Metilación de ADN/genética , Metilación de ADN/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica/fisiología , Estructura Terciaria de Proteína/genética , Dedos de Zinc/genética
12.
Nat Commun ; 14(1): 726, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759609

RESUMEN

Transcription must be tightly controlled to regulate gene expression and development. However, our understanding of the molecular mechanisms that influence transcription and how these are coordinated in cells to ensure normal gene expression remains rudimentary. Here, by dissecting the function of the SET1 chromatin-modifying complexes that bind to CpG island-associated gene promoters, we discover that they play a specific and essential role in enabling the expression of low to moderately transcribed genes. Counterintuitively, this effect can occur independently of SET1 complex histone-modifying activity and instead relies on an interaction with the RNA Polymerase II-binding protein WDR82. Unexpectedly, we discover that SET1 complexes enable gene expression by antagonising premature transcription termination by the ZC3H4/WDR82 complex at CpG island-associated genes. In contrast, at extragenic sites of transcription, which typically lack CpG islands and SET1 complex occupancy, we show that the activity of ZC3H4/WDR82 is unopposed. Therefore, we reveal a gene regulatory mechanism whereby CpG islands are bound by a protein complex that specifically protects genic transcripts from premature termination, effectively distinguishing genic from extragenic transcription and enabling normal gene expression.


Asunto(s)
Histonas , Transcripción Genética , Islas de CpG/genética , Histonas/metabolismo , Cromatina/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Metilación de ADN/genética
13.
bioRxiv ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37609190

RESUMEN

To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centres (GCs). Among those, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by relying on oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Transcriptome examination and mass spectrometry analysis revealed that miR-155 regulates H3K36me2 levels by directly repressing hypoxia-induced histone lysine demethylase, Kdm2a. This is indispensable for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia. The miR-155-Kdm2a interaction is crucial to prevent excessive production of reactive oxygen species and apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity clones, ensuring their expansion and consequently affinity maturation.

14.
Proc Natl Acad Sci U S A ; 106(47): 19934-9, 2009 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19897727

RESUMEN

The regulated expression of large human genes can depend on long-range interactions to establish appropriate three-dimensional structures across the locus. The cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encompasses 189 kb of genomic DNA, shows a complex pattern of expression with both spatial and temporal regulation. The flanking loci, ASZ1 and CTTNBP2, show very different tissue-specific expression. The mechanisms governing control of CFTR expression remain poorly understood, although they are known to involve intronic regulatory elements. Here, we show a complex looped structure of the CFTR locus in cells that express the gene, which is absent from cells in which the gene is inactive. By using chromatin conformation capture (3C) with a bait probe at the CFTR promoter, we demonstrate close interaction of this region with sequences in the middle of the gene about 100 kb from the promoter and with regions 3' to the locus that are about 200 kb away. We show that these interacting regions correspond to prominent DNase I hypersensitive sites within the locus. Moreover, these sequences act cooperatively in reporter gene constructs and recruit proteins that modify chromatin structure. The model for CFTR gene expression that is revealed by our data provides a paradigm for other large genes with multiple regulatory elements lying within both introns and intergenic regions. We anticipate that these observations will enable original approaches to designing regulated transgenes for tissue-specific gene therapy protocols.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Elementos de Facilitación Genéticos , Células Epiteliales/fisiología , Regulación de la Expresión Génica , Intrones , Conformación de Ácido Nucleico , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/citología , Genes Reporteros , Factor Nuclear 1 del Hepatocito/genética , Factor Nuclear 1 del Hepatocito/metabolismo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
15.
Nucleic Acids Res ; 37(4): 1086-94, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19129223

RESUMEN

Regulation of expression of the CFTR gene is poorly understood. Elements within the basal promoter of the gene do not fully explain CFTR expression patterns, suggesting that cis-regulatory elements are located elsewhere, either within the locus or in adjacent chromatin. We previously mapped DNase I hypersensitive sites (DHS) in 400 kb spanning the CFTR locus including a cluster of sites close to the 3'-end of the gene. Here we focus on a DHS at +6.8 kb from the CFTR translation end-point to evaluate its potential role in regulating expression of the gene. This DHS, which encompasses a consensus CTCF-binding site, was evident in primary human epididymis cells that express abundant CFTR mRNA. We show by DNase I footprinting and electophoretic mobility shift assays that the cis-regulatory element within this DHS binds CTCF in vitro. We further demonstrate that the element functions as an enhancer blocker in a well-established in vivo assay, and by using chromatin immunoprecipitation that it recruits CTCF in vivo. Moreover, we reveal that in primary epididymis cells, the +6.8 kb DHS interacts closely with the CFTR promoter, suggesting that the CFTR locus exists in a looped conformation, characteristic of an active chromatin hub.


Asunto(s)
Región de Flanqueo 3' , Cromatina/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Proteínas de Unión al ADN/metabolismo , Elementos Aisladores , Proteínas Represoras/metabolismo , Sitios de Unión , Factor de Unión a CCCTC , Células Cultivadas , Cromatina/química , Huella de ADN , Desoxirribonucleasa I , Elementos de Facilitación Genéticos , Epidídimo/citología , Epidídimo/metabolismo , Humanos , Masculino
17.
Nat Commun ; 12(1): 5341, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504070

RESUMEN

Polycomb repressive complexes-1 and -2 (PRC1 and 2) silence developmental genes in a spatiotemporal manner during embryogenesis. How Polycomb group (PcG) proteins orchestrate down-regulation of target genes upon differentiation, however, remains elusive. Here, by differentiating embryonic stem cells into embryoid bodies, we reveal a crucial role for the PCGF1-containing variant PRC1 complex (PCGF1-PRC1) to mediate differentiation-associated down-regulation of a group of genes. Upon differentiation cues, transcription is down-regulated at these genes, in association with PCGF1-PRC1-mediated deposition of histone H2AK119 mono-ubiquitination (H2AK119ub1) and PRC2 recruitment. In the absence of PCGF1-PRC1, both H2AK119ub1 deposition and PRC2 recruitment are disrupted, leading to aberrant expression of target genes. PCGF1-PRC1 is, therefore, required for initiation and consolidation of PcG-mediated gene repression during differentiation.


Asunto(s)
Cuerpos Embrioides/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 2/genética , Animales , Diferenciación Celular , Embrión de Mamíferos , Cuerpos Embrioides/citología , Histonas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Transgénicos , Células Madre Embrionarias de Ratones/citología , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Cultivo Primario de Células , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Ubiquitinación
18.
Cell Rep ; 30(3): 820-835.e10, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968256

RESUMEN

How chromosome organization is related to genome function remains poorly understood. Cohesin, loop extrusion, and CCCTC-binding factor (CTCF) have been proposed to create topologically associating domains (TADs) to regulate gene expression. Here, we examine chromosome conformation in embryonic stem cells lacking cohesin and find, as in other cell types, that cohesin is required to create TADs and regulate A/B compartmentalization. However, in the absence of cohesin, we identify a series of long-range chromosomal interactions that persist. These correspond to regions of the genome occupied by the polycomb repressive system and are dependent on PRC1. Importantly, we discover that cohesin counteracts these polycomb-dependent interactions, but not interactions between super-enhancers. This disruptive activity is independent of CTCF and insulation and appears to modulate gene repression by the polycomb system. Therefore, we discover that cohesin disrupts polycomb-dependent chromosome interactions to modulate gene expression in embryonic stem cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Animales , Factor de Unión a CCCTC/metabolismo , Línea Celular , Cromatina/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Cohesinas
19.
J Cell Mol Med ; 13(4): 680-92, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19449463

RESUMEN

Genes can maintain spatiotemporal expression patterns by long-range interactions between cis-acting elements. The cystic fibrosis transmembrane conductance regulator gene (CFTR) is expressed primarily in epithelial cells. An element located within a DNase I-hypersensitive site (DHS) 10 kb into the first intron was previously shown to augment CFTR promoter activity in a tissue-specific manner. Here, we reveal the mechanism by which this element influences CFTR transcription. We employed a high-resolution method of mapping DHS using tiled microarrays to accurately locate the intron 1 DHS. Transfection of promoter-reporter constructs demonstrated that the element displays classical tissue-specific enhancer properties and can independently recruit factors necessary for transcription initiation. In vitro DNase I footprinting analysis identified a protected region that corresponds to a conserved, predicted binding site for hepatocyte nuclear factor 1 (HNF1). We demonstrate by electromobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) that HNF1 binds to this element both in vitro and in vivo. Moreover, using chromosome conformation capture (3C) analysis, we show that this element interacts with the CFTR promoter in CFTR-expressing cells. These data provide the first insight into the three- dimensional (3D) structure of the CFTR locus and confirm the contribution of intronic cis-acting elements to the regulation of CFTR gene expression.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Intrones/genética , Regiones Promotoras Genéticas , Emparejamiento Base/genética , Secuencia de Bases , Sitios de Unión , Línea Celular , Huella de ADN , Desoxirribonucleasa I/metabolismo , Genes Reporteros , Factor Nuclear 1 del Hepatocito/metabolismo , Humanos , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Unión Proteica , Factores de Transcripción/metabolismo , Transcripción Genética , Transfección
20.
Biochem Soc Trans ; 37(Pt 4): 843-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19614605

RESUMEN

The CFTR (cystic fibrosis transmembrane conductance regulator) gene, which when mutated causes cystic fibrosis, encompasses nearly 200 kb of genomic DNA at chromosome 7q31.2. It is flanked by two genes ASZ1 [ankyrin repeat, SAM (sterile alpha-motif) and basic leucine zipper] and CTTNBP2 (cortactin-binding protein 2), which have very different expression profiles. CFTR is expressed primarily in specialized epithelial cells, whereas ASZ1 is transcribed exclusively in the testis and ovary, and CTTNBP2 is highly expressed in the brain, kidney and pancreas, with lower levels of expression in other tissues. Despite its highly regulated pattern of expression, the promoter of the CFTR gene apparently lacks the necessary elements to achieve this. We previously suggested that cis-acting regulatory elements elsewhere in the locus, both flanking the gene and within introns, were required to co-ordinate regulated, tissue-specific expression of CFTR. We identified a number of crucial elements, including enhancer-blocking insulators flanking the locus, intronic tissue-specific enhancers and also characterized some of the interacting proteins. We recently employed a high-resolution method of mapping DHS (DNase I-hypersensitive sites) using tiled microarrays. DHS are often associated with regulatory elements and use of this technique generated cell-specific profiles of potential regulatory sequences in primary cells and cell lines. We characterized a set of cis-acting elements within the CFTR locus and demonstrated direct physical interaction between them and the CFTR promoter, by chromosome conformation capture (3C). These results provide the first insight into the three-dimensional structure of the active CFTR gene.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Fibrosis Quística/metabolismo , Animales , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA