Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(7): 1545-1558.e18, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29153836

RESUMEN

mTORC1 is a signal integrator and master regulator of cellular anabolic processes linked to cell growth and survival. Here, we demonstrate that mTORC1 promotes lipid biogenesis via SRPK2, a key regulator of RNA-binding SR proteins. mTORC1-activated S6K1 phosphorylates SRPK2 at Ser494, which primes Ser497 phosphorylation by CK1. These phosphorylation events promote SRPK2 nuclear translocation and phosphorylation of SR proteins. Genome-wide transcriptome analysis reveals that lipid biosynthetic enzymes are among the downstream targets of mTORC1-SRPK2 signaling. Mechanistically, SRPK2 promotes SR protein binding to U1-70K to induce splicing of lipogenic pre-mRNAs. Inhibition of this signaling pathway leads to intron retention of lipogenic genes, which triggers nonsense-mediated mRNA decay. Genetic or pharmacological inhibition of SRPK2 blunts de novo lipid synthesis, thereby suppressing cell growth. These results thus reveal a novel role of mTORC1-SRPK2 signaling in post-transcriptional regulation of lipid metabolism and demonstrate that SRPK2 is a potential therapeutic target for mTORC1-driven metabolic disorders.


Asunto(s)
Regulación de la Expresión Génica , Lipogénesis , Procesamiento Postranscripcional del ARN , Transducción de Señal , Animales , Núcleo Celular/metabolismo , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Femenino , Xenoinjertos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo
2.
Cell ; 167(7): 1670-1671, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984715

RESUMEN

In this issue of Cell, Wu et al. employed C. elegans and human cell experiments to identify a pathway through which metformin increases lifespan and inhibits growth. A key transcriptional target, ACAD10, is activated when metformin induces nuclear exclusion of the GTPase RagC, thereby inhibiting mTORC1 through an unexpected mechanism.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Metformina/farmacología , Transporte Activo de Núcleo Celular , Envejecimiento/efectos de los fármacos , Animales , Humanos , Neoplasias/tratamiento farmacológico
3.
Proc Natl Acad Sci U S A ; 120(2): e2204750120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595699

RESUMEN

Exercise is a nonpharmacological intervention that improves health during aging and a valuable tool in the diagnostics of aging-related diseases. In muscle, exercise transiently alters mitochondrial functionality and metabolism. Mitochondrial fission and fusion are critical effectors of mitochondrial plasticity, which allows a fine-tuned regulation of organelle connectiveness, size, and function. Here we have investigated the role of mitochondrial dynamics during exercise in the model organism Caenorhabditis elegans. We show that in body-wall muscle, a single exercise session induces a cycle of mitochondrial fragmentation followed by fusion after a recovery period, and that daily exercise sessions delay the mitochondrial fragmentation and physical fitness decline that occur with aging. Maintenance of proper mitochondrial dynamics is essential for physical fitness, its enhancement by exercise training, and exercise-induced remodeling of the proteome. Surprisingly, among the long-lived genotypes we analyzed (isp-1,nuo-6, daf-2, eat-2, and CA-AAK-2), constitutive activation of AMP-activated protein kinase (AMPK) uniquely preserves physical fitness during aging, a benefit that is abolished by impairment of mitochondrial fission or fusion. AMPK is also required for physical fitness to be enhanced by exercise, with our findings together suggesting that exercise may enhance muscle function through AMPK regulation of mitochondrial dynamics. Our results indicate that mitochondrial connectivity and the mitochondrial dynamics cycle are essential for maintaining physical fitness and exercise responsiveness during aging and suggest that AMPK activation may recapitulate some exercise benefits. Targeting mechanisms to optimize mitochondrial fission and fusion, as well as AMPK activation, may represent promising strategies for promoting muscle function during aging.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Dinámicas Mitocondriales , Animales , Dinámicas Mitocondriales/fisiología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/fisiología , Caenorhabditis elegans/metabolismo , Ejercicio Físico , Aptitud Física , Músculo Esquelético/metabolismo
4.
Cell ; 136(5): 926-38, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19269369

RESUMEN

TRIM-NHL proteins represent a large class of metazoan proteins implicated in development and disease. We demonstrate that a C. elegans TRIM-NHL protein, NHL-2, functions as a cofactor for the microRNA-induced silencing complex (miRISC) and thereby enhances the posttranscriptional repression of several genetically verified microRNA targets, including hbl-1 and let-60/Ras (by the let-7 family of microRNAs) and cog-1 (by the lsy-6 microRNA). NHL-2 is localized to cytoplasmic P-bodies and physically associates with the P-body protein CGH-1 and the core miRISC components ALG-1/2 and AIN-1. nhl-2 and cgh-1 mutations compromise the repression of microRNA targets in vivo but do not affect microRNA biogenesis, indicating a role for an NHL-2:CGH-1 complex in the effector phase of miRISC activity. We propose that the NHL-2:CGH-1 complex functions in association with mature miRISC to modulate the efficacy of microRNA:target interactions in response to physiological and developmental signals, thereby ensuring the robustness of genetic regulatory pathways regulated by microRNAs.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , MicroARNs/metabolismo , ARN de Helminto/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Gránulos Citoplasmáticos/metabolismo , Proteínas de Homeodominio/metabolismo , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo
5.
Mol Cell ; 63(4): 553-566, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27540856

RESUMEN

Emerging evidence suggests that many proteins may be regulated through cysteine modification, but the extent and functions of this signaling remain largely unclear. The endoplasmic reticulum (ER) transmembrane protein IRE-1 maintains ER homeostasis by initiating the unfolded protein response (UPR(ER)). Here we show in C. elegans and human cells that IRE-1 has a distinct redox-regulated function in cytoplasmic homeostasis. Reactive oxygen species (ROS) that are generated at the ER or by mitochondria sulfenylate a cysteine within the IRE-1 kinase activation loop. This inhibits the IRE-1-mediated UPR(ER) and initiates the p38/SKN-1(Nrf2) antioxidant response, thereby increasing stress resistance and lifespan. Many AGC-family kinases (AKT, p70S6K, PKC, ROCK1) seem to be regulated similarly. The data reveal that IRE-1 has an ancient function as a cytoplasmic sentinel that activates p38 and SKN-1(Nrf2) and indicate that cysteine modifications induced by ROS signals can direct proteins to adopt unexpected functions and may coordinate many cellular processes.


Asunto(s)
Antioxidantes/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Cisteína/metabolismo , Proteínas de Unión al ADN/metabolismo , Endorribonucleasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Citoplasma/enzimología , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/enzimología , Endorribonucleasas/genética , Células Hep G2 , Humanos , Longevidad , Mitocondrias/enzimología , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Transfección , Respuesta de Proteína Desplegada , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
PLoS Genet ; 17(3): e1009358, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33661901

RESUMEN

The feeling of hunger or satiety results from integration of the sensory nervous system with other physiological and metabolic cues. This regulates food intake, maintains homeostasis and prevents disease. In C. elegans, chemosensory neurons sense food and relay information to the rest of the animal via hormones to control food-related behaviour and physiology. Here we identify a new component of this system, SKN-1B which acts as a central food-responsive node, ultimately controlling satiety and metabolic homeostasis. SKN-1B, an ortholog of mammalian NF-E2 related transcription factors (Nrfs), has previously been implicated with metabolism, respiration and the increased lifespan incurred by dietary restriction. Here we show that SKN-1B acts in two hypothalamus-like ASI neurons to sense food, communicate nutritional status to the organism, and control satiety and exploratory behaviours. This is achieved by SKN-1B modulating endocrine signalling pathways (IIS and TGF-ß), and by promoting a robust mitochondrial network. Our data suggest a food-sensing and satiety role for mammalian Nrf proteins.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Conducta Animal , Caenorhabditis elegans/genética , Modelos Biológicos , Músculos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
7.
EMBO Rep ; 22(12): e52964, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34617666

RESUMEN

While mitochondrial function is essential for life in all multicellular organisms, a mild impairment of mitochondrial function can extend longevity in model organisms. By understanding the molecular mechanisms involved, these pathways might be targeted to promote healthy aging. In studying two long-lived mitochondrial mutants in C. elegans, we found that disrupting subunits of the mitochondrial electron transport chain results in upregulation of genes involved in innate immunity, which is driven by the mitochondrial unfolded protein response (mitoUPR) but also dependent on the canonical p38-mediated innate immune signaling pathway. Both of these pathways are required for the increased resistance to bacterial pathogens and extended longevity of the long-lived mitochondrial mutants, as is the FOXO transcription factor DAF-16. This work demonstrates that both the p38-mediated innate immune signaling pathway and the mitoUPR act in concert on the same innate immunity genes to promote pathogen resistance and longevity and that input from the mitochondria can extend longevity by signaling through these pathways. This indicates that multiple evolutionarily conserved genetic pathways controlling innate immunity also function to modulate lifespan.


Asunto(s)
Proteínas de Caenorhabditis elegans , Longevidad , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inmunidad Innata/fisiología , Longevidad/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Transducción de Señal
8.
Cell ; 135(1): 18-20, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18854150

RESUMEN

How transcription is silenced in early embryos has long been a mystery. In this issue, Guven-Ozkan et al. (2008) report that transcriptional repression during worm embryogenesis is mediated through sequestration of the general transcription factor TAF-4 and is regulated by mechanisms that orchestrate the transition between maternal and zygotic gene expression.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Proteínas Portadoras/metabolismo , Silenciador del Gen , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transcripción Genética , Cigoto/metabolismo
9.
Cell ; 132(6): 1025-38, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18358814

RESUMEN

Insulin/IGF-1-like signaling (IIS) is central to growth and metabolism and has a conserved role in aging. In C. elegans, reductions in IIS increase stress resistance and longevity, effects that require the IIS-inhibited FOXO protein DAF-16. The C. elegans transcription factor SKN-1 also defends against oxidative stress by mobilizing the conserved phase 2 detoxification response. Here we show that IIS not only opposes DAF-16 but also directly inhibits SKN-1 in parallel. The IIS kinases AKT-1, -2, and SGK-1 phosphorylate SKN-1, and reduced IIS leads to constitutive SKN-1 nuclear accumulation in the intestine and SKN-1 target gene activation. SKN-1 contributes to the increased stress tolerance and longevity resulting from reduced IIS and delays aging when expressed transgenically. Furthermore, SKN-1 that is constitutively active increases life span independently of DAF-16. Our findings indicate that the transcription network regulated by SKN-1 promotes longevity and is an important direct target of IIS.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Redes Reguladoras de Genes , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Intestinos , Longevidad , Estrés Oxidativo , Fosforilación , Receptor de Insulina/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(42): 20817-20819, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570569

RESUMEN

Increasing life expectancy is causing the prevalence of age-related diseases to rise, and there is an urgent need for new strategies to improve health at older ages. Reduced activity of insulin/insulin-like growth factor signaling (IIS) and mechanistic target of rapamycin (mTOR) nutrient-sensing signaling network can extend lifespan and improve health during aging in diverse organisms. However, the extensive feedback in this network and adverse side effects of inhibition imply that simultaneous targeting of specific effectors in the network may most effectively combat the effects of aging. We show that the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib, the mTOR complex 1 (mTORC1) inhibitor rapamycin, and the glycogen synthase kinase-3 (GSK-3) inhibitor lithium act additively to increase longevity in Drosophila Remarkably, the triple drug combination increased lifespan by 48%. Furthermore, the combination of lithium with rapamycin cancelled the latter's effects on lipid metabolism. In conclusion, a polypharmacology approach of combining established, prolongevity drug inhibitors of specific nodes may be the most effective way to target the nutrient-sensing network to improve late-life health.


Asunto(s)
Envejecimiento/efectos de los fármacos , Drosophila/efectos de los fármacos , Litio/farmacología , Longevidad/efectos de los fármacos , Nutrientes/metabolismo , Piridonas/farmacología , Pirimidinonas/farmacología , Sirolimus/farmacología , Anciano , Envejecimiento/metabolismo , Animales , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Combinación de Medicamentos , Femenino , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Persona de Mediana Edad , Transducción de Señal/efectos de los fármacos
11.
Nature ; 519(7541): 97-101, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25517099

RESUMEN

Interventions that delay ageing mobilize mechanisms that protect and repair cellular components, but it is unknown how these interventions might slow the functional decline of extracellular matrices, which are also damaged during ageing. Reduced insulin/IGF-1 signalling (rIIS) extends lifespan across the evolutionary spectrum, and in juvenile Caenorhabditis elegans also allows the transcription factor DAF-16/FOXO to induce development into dauer, a diapause that withstands harsh conditions. It has been suggested that rIIS delays C. elegans ageing through activation of dauer-related processes during adulthood, but some rIIS conditions confer robust lifespan extension unaccompanied by any dauer-like traits. Here we show that rIIS can promote C. elegans longevity through a program that is genetically distinct from the dauer pathway, and requires the Nrf (NF-E2-related factor) orthologue SKN-1 acting in parallel to DAF-16. SKN-1 is inhibited by IIS and has been broadly implicated in longevity, but is rendered dispensable for rIIS lifespan extension by even mild activity of dauer-related processes. When IIS is decreased under conditions that do not induce dauer traits, SKN-1 most prominently increases expression of collagens and other extracellular matrix genes. Diverse genetic, nutritional, and pharmacological pro-longevity interventions delay an age-related decline in collagen expression. These collagens mediate adulthood extracellular matrix remodelling, and are needed for ageing to be delayed by interventions that do not involve dauer traits. By genetically delineating a dauer-independent rIIS ageing pathway, our results show that IIS controls a broad set of protective mechanisms during C. elegans adulthood, and may facilitate elucidation of processes of general importance for longevity. The importance of collagen production in diverse anti-ageing interventions implies that extracellular matrix remodelling is a generally essential signature of longevity assurance, and that agents promoting extracellular matrix youthfulness may have systemic benefit.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Colágeno/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Longevidad/fisiología , Transducción de Señal , Factores de Transcripción/metabolismo , Envejecimiento/fisiología , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Colágeno/biosíntesis , Colágeno/genética , Matriz Extracelular/metabolismo , Factores de Transcripción Forkhead , Larva/crecimiento & desarrollo
12.
BMC Biol ; 16(1): 147, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30563508

RESUMEN

BACKGROUND: The mitochondrial unfolded protein response (mitoUPR) is a stress response pathway activated by disruption of proteostasis in the mitochondria. This pathway has been proposed to influence lifespan, with studies suggesting that mitoUPR activation has complex effects on longevity. RESULTS: Here, we examined the contribution of the mitoUPR to the survival and lifespan of three long-lived mitochondrial mutants in Caenorhabditis elegans by modulating the levels of ATFS-1, the central transcription factor that mediates the mitoUPR. We found that clk-1, isp-1, and nuo-6 worms all exhibit an ATFS-1-dependent activation of the mitoUPR. While loss of atfs-1 during adulthood does not affect lifespan in any of these strains, absence of atfs-1 during development prevents clk-1 and isp-1 worms from reaching adulthood and reduces the lifespan of nuo-6 mutants. Examining the mechanism by which deletion of atfs-1 reverts nuo-6 lifespan to wild-type, we find that many of the transcriptional changes present in nuo-6 worms are mediated by ATFS-1. Genes exhibiting an ATFS-1-dependent upregulation in nuo-6 worms are enriched for transcripts that function in stress response and metabolism. Consistent, with this finding, loss of atfs-1 abolishes the enhanced stress resistance observed in nuo-6 mutants and prevents upregulation of multiple stress response pathways including the HIF-1-mediated hypoxia response, SKN-1-mediated oxidative stress response and DAF-16-mediated stress response. CONCLUSIONS: Our results suggest that in the long-lived mitochondrial mutant nuo-6 activation of the mitoUPR causes atfs-1-dependent changes in the expression of genes involved in stress response and metabolism, which contributes to the extended longevity observed in this mutant. This work demonstrates that the mitoUPR can modulate multiple stress response pathways and suggests that it is crucial for the development and lifespan of long-lived mitochondrial mutants.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Longevidad/genética , Mutación , Estrés Oxidativo/fisiología , Factores de Transcripción/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocondrias , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada
13.
Gerontology ; 64(1): 96-104, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28934747

RESUMEN

The groundbreaking discovery that lower levels of insulin/IGF-1 signaling (IIS) can induce lifespan extension was reported 24 years ago in the nematode Caenorhabditis elegans. In this organism, mutations in the insulin/IGF-1 receptor gene daf-2 or other genes in this pathway can double lifespan. Subsequent work has revealed that reduced IIS (rIIS) extends lifespan across diverse species, possibly including humans. In C. elegans, IIS also regulates development into the diapause state known as dauer, a quiescent larval form that enables C. elegans to endure harsh environments through morphological adaptation, improved cellular repair, and slowed metabolism. Considerable progress has been made uncovering mechanisms that are affected by C. elegans rIIS. However, from the beginning it has remained unclear to what extent rIIS extends C. elegans lifespan by mobilizing dauer-associated mechanisms in adults. As we discuss, recent work has shed light on this question by determining that rIIS can extend C. elegans lifespan comparably through downstream processes that are either dauer-related or -independent. Importantly, these two lifespan extension programs can be distinguished genetically. It will now be critical to tease apart these programs, because each may involve different longevity-promoting mechanisms that may be relevant to higher organisms. A recent analysis of organismal "healthspan" has questioned the value of C. elegans rIIS as a paradigm for understanding healthy aging, as opposed to simply extending life. We discuss other work that argues strongly that C. elegans rIIS is indeed an invaluable model and consider the likely possibility that dauer-related processes affect parameters associated with health under rIIS conditions. Together, these studies indicate that C. elegans and analyses of rIIS in this organism will continue to provide unexpected and exciting results, and new paradigms that will be valuable for understanding healthy aging in humans.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Longevidad/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Diapausa/genética , Diapausa/fisiología , Insulina/genética , Insulina/fisiología , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/fisiología , Longevidad/genética , Modelos Biológicos , Mutación , Receptor de Insulina/genética , Receptor de Insulina/fisiología , Transducción de Señal
14.
Proc Natl Acad Sci U S A ; 111(10): 3781-6, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24556985

RESUMEN

Mitochondrial defects underlie a multitude of human diseases. Genetic manipulation of mitochondrial regulatory pathways represents a potential therapeutic approach. We have carried out a high-throughput overexpression screen for genes that affect mitochondrial abundance or activity using flow-cytometry-based enrichment of a cell population expressing a high-complexity, concentration-normalized pool of human ORFs. The screen identified 94 candidate mitochondrial regulators including the nuclear protein GLTSCR2, also known as PICT1. GLTSCR2 enhances mitochondrial function and is required for the maintenance of oxygen consumption, consistent with a pivotal role in the control of cellular respiration. RNAi inactivation of the Caenorhabditis elegans ortholog of GLTSCR2 reduces respiration in worms, indicating functional conservation across species. GLTSCR2 controls cellular proliferation and metabolism via the transcription factor Myc, and is induced by mitochondrial stress, suggesting it may constitute a significant component of the mitochondrial signaling pathway.


Asunto(s)
Mitocondrias/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico , Proteínas Supresoras de Tumor/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Caenorhabditis elegans , Células Cultivadas , Cartilla de ADN/genética , Bases de Datos Genéticas , Citometría de Flujo , Humanos , Inmunoprecipitación , Análisis por Micromatrices , Mitocondrias/metabolismo , Sistemas de Lectura Abierta/genética , Consumo de Oxígeno/fisiología , Interferencia de ARN , Estrés Fisiológico/fisiología
15.
PLoS Genet ; 9(9): e1003701, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24068940

RESUMEN

The Unfolded Protein Response (UPR) maintains homeostasis in the endoplasmic reticulum (ER) and defends against ER stress, an underlying factor in various human diseases. During the UPR, numerous genes are activated that sustain and protect the ER. These responses are known to involve the canonical UPR transcription factors XBP1, ATF4, and ATF6. Here, we show in C. elegans that the conserved stress defense factor SKN-1/Nrf plays a central and essential role in the transcriptional UPR. While SKN-1/Nrf has a well-established function in protection against oxidative and xenobiotic stress, we find that it also mobilizes an overlapping but distinct response to ER stress. SKN-1/Nrf is regulated by the UPR, directly controls UPR signaling and transcription factor genes, binds to common downstream targets with XBP-1 and ATF-6, and is present at the ER. SKN-1/Nrf is also essential for resistance to ER stress, including reductive stress. Remarkably, SKN-1/Nrf-mediated responses to oxidative stress depend upon signaling from the ER. We conclude that SKN-1/Nrf plays a critical role in the UPR, but orchestrates a distinct oxidative stress response that is licensed by ER signaling. Regulatory integration through SKN-1/Nrf may coordinate ER and cytoplasmic homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Estrés del Retículo Endoplásmico/genética , Estrés Oxidativo/genética , Factores de Transcripción/genética , Transcripción Genética , Respuesta de Proteína Desplegada/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Citoplasma/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Transducción de Señal
16.
Dev Biol ; 384(2): 214-27, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23973804

RESUMEN

The evolutionarily conserved target of rapamycin (TOR) kinase controls fundamental metabolic processes to support cell and tissue growth. TOR functions within the context of two distinct complexes, TORC1 and TORC2. TORC2, with its specific component Rictor, has been recently implicated in aging and regulation of growth and metabolism. Here, we identify rict-1/Rictor as a regulator of embryonic development in C. elegans. The transcription factor skn-1 establishes development of the mesendoderm in embryos, and is required for cellular homeostasis and longevity in adults. Loss of maternal skn-1 function leads to mis-specification of the mesendodermal precursor and failure to form intestine and pharynx. We found that genetic inactivation of rict-1 suppressed skn-1-associated lethality by restoring mesendodermal specification in skn-1 deficient embryos. Inactivation of other TORC2 but not TORC1 components also partially rescued skn-1 embryonic lethality. The SGK-1 kinase mediated these functions downstream of rict-1/TORC2, as a sgk-1 gain-of-function mutant suppressed the rict-1 mutant phenotype. These data indicate that TORC2 and SGK-1 antagonize SKN-1 during embryonic development.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Caenorhabditis elegans/embriología , Proteínas de Unión al ADN/antagonistas & inhibidores , Embrión no Mamífero/citología , Endodermo/embriología , Mesodermo/embriología , Complejos Multiproteicos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Genes Letales , Diana Mecanicista del Complejo 2 de la Rapamicina
17.
PLoS Genet ; 7(6): e1002119, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21695230

RESUMEN

SKN-1, the Caenorhabditis elegans Nrf1/2/3 ortholog, promotes both oxidative stress resistance and longevity. SKN-1 responds to oxidative stress by upregulating genes that detoxify and defend against free radicals and other reactive molecules, a SKN-1/Nrf function that is both well-known and conserved. Here we show that SKN-1 has a broader and more complex role in maintaining cellular stress defenses. SKN-1 sustains expression and activity of the ubiquitin-proteasome system (UPS) and coordinates specific protective responses to perturbations in protein synthesis or degradation through the UPS. If translation initiation or elongation is impaired, SKN-1 upregulates overlapping sets of cytoprotective genes and increases stress resistance. When proteasome gene expression and activity are blocked, SKN-1 activates multiple classes of proteasome subunit genes in a compensatory response. SKN-1 thereby maintains UPS activity in the intestine in vivo under normal conditions and promotes survival when the proteasome is inhibited. In contrast, when translation elongation is impaired, SKN-1 does not upregulate proteasome genes, and UPS activity is then reduced. This indicates that UPS activity depends upon presence of an intact translation elongation apparatus; and it supports a model, suggested by genetic and biochemical studies in yeast, that protein synthesis and degradation may be coupled processes. SKN-1 therefore has a critical tissue-specific function in increasing proteasome gene expression and UPS activity under normal conditions, as well as when the UPS system is stressed, but mounts distinct responses when protein synthesis is perturbed. The specificity of these SKN-1-mediated stress responses, along with the apparent coordination between UPS and translation elongation activity, may promote protein homeostasis under stress or disease conditions. The data suggest that SKN-1 may increase longevity, not only through its well-documented role in boosting stress resistance, but also through contributing to protein homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Extensión de la Cadena Peptídica de Translación , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Complejo de la Endopetidasa Proteasomal/genética , Factores de Transcripción/genética , Ubiquitina/genética
18.
PLoS Genet ; 6(8)2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20700440

RESUMEN

Caenorhabditis elegans SKN-1 (ortholog of mammalian Nrf1/2/3) is critical for oxidative stress resistance and promotes longevity under reduced insulin/IGF-1-like signaling (IIS), dietary restriction (DR), and normal conditions. SKN-1 inducibly activates genes involved in detoxification, protein homeostasis, and other functions in response to stress. Here we used genome-scale RNA interference (RNAi) screening to identify mechanisms that prevent inappropriate SKN-1 target gene expression under non-stressed conditions. We identified 41 genes for which knockdown leads to activation of a SKN-1 target gene (gcs-1) through skn-1-dependent or other mechanisms. These genes correspond to multiple cellular processes, including mRNA translation. Inhibition of translation is known to increase longevity and stress resistance and may be important for DR-induced lifespan extension. One model postulates that these effects derive from reduced energy needs, but various observations suggest that specific longevity pathways are involved. Here we show that translation initiation factor RNAi robustly induces SKN-1 target gene transcription and confers skn-1-dependent oxidative stress resistance. The accompanying increases in longevity are mediated largely through the activities of SKN-1 and the transcription factor DAF-16 (FOXO), which is required for longevity that derives from reduced IIS. Our results indicate that the SKN-1 detoxification gene network monitors various metabolic and regulatory processes. Interference with one of these processes, translation initiation, leads to a transcriptional response whereby SKN-1 promotes stress resistance and functions together with DAF-16 to extend lifespan. This stress response may be beneficial for coping with situations that are associated with reduced protein synthesis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/metabolismo , Longevidad , Biosíntesis de Proteínas , Interferencia de ARN , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Estrés Fisiológico , Factores de Transcripción/genética
19.
Sci Adv ; 9(1): eadc8917, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598980

RESUMEN

Although excessive lipid accumulation is a hallmark of obesity-related pathologies, some lipids are beneficial. Oleic acid (OA), the most abundant monounsaturated fatty acid (FA), promotes health and longevity. Here, we show that OA benefits Caenorhabditis elegans by activating the endoplasmic reticulum (ER)-resident transcription factor SKN-1A (Nrf1/NFE2L1) in a lipid homeostasis response. SKN-1A/Nrf1 is cleared from the ER by the ER-associated degradation (ERAD) machinery and stabilized when proteasome activity is low and canonically maintains proteasome homeostasis. Unexpectedly, OA increases nuclear SKN-1A levels independently of proteasome activity, through lipid droplet-dependent enhancement of ERAD. In turn, SKN-1A reduces steatosis by reshaping the lipid metabolism transcriptome and mediates longevity from OA provided through endogenous accumulation, reduced H3K4 trimethylation, or dietary supplementation. Our findings reveal an unexpected mechanism of FA signal transduction, as well as a lipid homeostasis pathway that provides strategies for opposing steatosis and aging, and may mediate some benefits of the OA-rich Mediterranean diet.

20.
Aging Cell ; 21(5): e13604, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35388610

RESUMEN

Methionine restriction (MetR) can extend lifespan and delay the onset of aging-associated pathologies in most model organisms. Previously, we showed that supplementation with the metabolite S-adenosyl-L-homocysteine (SAH) extends lifespan and activates the energy sensor AMP-activated protein kinase (AMPK) in the budding yeast Saccharomyces cerevisiae. However, the mechanism involved and whether SAH can extend metazoan lifespan have remained unknown. Here, we show that SAH supplementation reduces Met levels and recapitulates many physiological and molecular effects of MetR. In yeast, SAH supplementation leads to inhibition of the target of rapamycin complex 1 (TORC1) and activation of autophagy. Furthermore, in Caenorhabditis elegans SAH treatment extends lifespan by activating AMPK and providing benefits of MetR. Therefore, we propose that SAH can be used as an intervention to lower intracellular Met and confer benefits of MetR.


Asunto(s)
Longevidad , Metionina , Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/metabolismo , Animales , Metionina/metabolismo , Metionina/farmacología , S-Adenosilhomocisteína/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA