Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35524475

RESUMEN

High-throughput genomic technologies are increasingly used in personalized cancer medicine. However, computational tools to maximize the use of scarce tissues combining distinct molecular layers are needed. Here we present a refined strategy, based on the R-package 'conumee', to better predict somatic copy number alterations (SCNA) from deoxyribonucleic acid (DNA) methylation arrays. Our approach, termed hereafter as 'conumee-KCN', improves SCNA prediction by incorporating tumor purity and dynamic thresholding. We trained our algorithm using paired DNA methylation and SNP Array 6.0 data from The Cancer Genome Atlas samples and confirmed its performance in cancer cell lines. Most importantly, the application of our approach in cancers of unknown primary identified amplified potentially actionable targets that were experimentally validated by Fluorescence in situ hybridization and immunostaining, reaching 100% specificity and 93.3% sensitivity.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias Primarias Desconocidas , ADN , Metilación de ADN , Humanos , Hibridación Fluorescente in Situ , Neoplasias Primarias Desconocidas/genética
2.
Proc Natl Acad Sci U S A ; 116(43): 21573-21579, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591214

RESUMEN

Squamous cell carcinomas (SCCs) arising from aerodigestive or anogenital epithelium that are associated with the human papillomavirus (HPV) are far more readily cured with radiation therapy than HPV-negative SCCs. The mechanism behind this increased radiosensitivity has been proposed to be secondary to defects in DNA repair, although the specific repair pathways that are disrupted have not been elucidated. To gain insight into this important biomarker of radiosensitivity, we first examined genomic patterns reflective of defects in DNA double-strand break repair, comparing HPV-associated and HPV-negative head and neck cancers (HNSCC). Compared to HPV-negative HNSCC genomes, HPV+ cases demonstrated a marked increase in the proportion of deletions with flanking microhomology, a signature associated with a backup, error-prone double-strand break repair pathway known as microhomology-mediated end-joining (MMEJ). Then, using 3 different methodologies to comprehensively profile double-strand break repair pathways in isogenic paired cell lines, we demonstrate that the HPV16 E7 oncoprotein suppresses canonical nonhomologous end-joining (NHEJ) and promotes error-prone MMEJ, providing a mechanistic rationale for the clinical radiosensitivity of these cancers.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Neoplasias de Cabeza y Cuello/genética , Papillomavirus Humano 16/genética , Proteínas E7 de Papillomavirus/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Línea Celular , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Epitelio/patología , Epitelio/virología , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/virología , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Carcinoma de Células Escamosas de Cabeza y Cuello/virología
3.
Blood ; 133(11): 1217-1221, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30692124

RESUMEN

Deletions of chromosome 17p (del17p) that span the TP53 gene are associated with poor outcome in multiple myeloma (MM), but the prognostic value of del17p cancer clonal fraction (CCF) remains unclear. We applied uniform cytogenetic assessments in a large cohort of newly diagnosed MM (NDMM) patients carrying varying levels of del17p. Incremental CCF change was associated with shorter survival, and a robust CCF threshold of 0.55 was established in discovery and replication data sets. After stratification on the 0.55-CCF threshold, high-risk patients had statistically significantly poorer outcomes compared with low-risk patients (median progression-free survival [PFS] and overall survival [OS], 14 and 32 vs 23.1 and 76.2 months, respectively). Analyses of a third data set comprising whole-exome sequencing data from NDMM patients identified presence of TP53 deletions/mutations as a necessary requirement for high-risk stratification in addition to exceeding the del17p CCF threshold. Meta-analysis conducted across 3 data sets confirmed the robustness of the CCF threshold for PFS and OS. Our analyses demonstrate the feasibility of fluorescence in situ hybridization- and sequencing-based methods to identify TP53 deletions, estimate CCF, and establish that both CCF threshold of 0.55 and presence of TP53 deletion are necessary to identify del17p-carrying NDMM patients with poor prognosis.


Asunto(s)
Biomarcadores de Tumor/genética , Deleción Cromosómica , Cromosomas Humanos Par 17/genética , Evolución Clonal , Mieloma Múltiple/genética , Mieloma Múltiple/mortalidad , Proteína p53 Supresora de Tumor/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mieloma Múltiple/patología , Mutación , Pronóstico , Tasa de Supervivencia
4.
J Pathol ; 242(2): 165-177, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28299801

RESUMEN

Homologous recombination (HR) DNA repair-deficient (HRD) breast cancers have been shown to be sensitive to DNA repair targeted therapies. Burgeoning evidence suggests that sporadic breast cancers, lacking germline BRCA1/BRCA2 mutations, may also be HRD. We developed a functional ex vivo RAD51-based test to identify HRD primary breast cancers. An integrated approach examining methylation, gene expression, and whole-exome sequencing was employed to ascertain the aetiology of HRD. Functional HRD breast cancers displayed genomic features of lack of competent HR, including large-scale state transitions and specific mutational signatures. Somatic and/or germline genetic alterations resulting in bi-allelic loss-of-function of HR genes underpinned functional HRD in 89% of cases, and were observed in only one of the 15 HR-proficient samples tested. These findings indicate the importance of a comprehensive genetic assessment of bi-allelic alterations in the HR pathway to deliver a precision medicine-based approach to select patients for therapies targeting tumour-specific DNA repair defects. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Trastornos por Deficiencias en la Reparación del ADN/genética , Recombinasa Rad51/genética , Reparación del ADN por Recombinación , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama Masculina/diagnóstico , Neoplasias de la Mama Masculina/genética , Trastornos por Deficiencias en la Reparación del ADN/diagnóstico , Femenino , Mutación de Línea Germinal , Recombinación Homóloga , Humanos , Pérdida de Heterocigocidad , Masculino , Persona de Mediana Edad , Mutación , Adulto Joven
5.
Front Immunol ; 14: 1130052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153563

RESUMEN

Background: Immunotherapy-based regimens have considerably improved the survival rate of B-cell non-Hodgkin lymphoma (B-NHL) patients in the last decades; however, most disease subtypes remain almost incurable. TG-1801, a bispecific antibody that targets CD47 selectively on CD19+ B-cells, is under clinical evaluation in relapsed/refractory (R/R) B-NHL patients either as a single-agent or in combination with ublituximab, a new generation CD20 antibody. Methods: A set of eight B-NHL cell lines and primary samples were cultured in vitro in the presence of bone marrow-derived stromal cells, M2-polarized primary macrophages, and primary circulating PBMCs as a source of effector cells. Cell response to TG-1801 alone or combined with the U2 regimen associating ublituximab to the PI3Kδ inhibitor umbralisib, was analyzed by proliferation assay, western blot, transcriptomic analysis (qPCR array and RNA sequencing followed by gene set enrichment analysis) and/or quantification of antibody-dependent cell death (ADCC) and antibody-dependent cell phagocytosis (ADCP). CRISPR-Cas9 gene edition was used to selectively abrogate GPR183 gene expression in B-NHL cells. In vivo, drug efficacy was determined in immunodeficient (NSG mice) or immune-competent (chicken embryo chorioallantoic membrane (CAM)) B-NHL xenograft models. Results: Using a panel of B-NHL co-cultures, we show that TG-1801, by disrupting the CD47-SIRPα axis, potentiates anti-CD20-mediated ADCC and ADCP. This led to a remarkable and durable antitumor effect of the triplet therapy composed by TG-1801 and U2 regimen, in vitro, as well as in mice and CAM xenograft models of B-NHL. Transcriptomic analysis also uncovered the upregulation of the G protein-coupled and inflammatory receptor, GPR183, as a crucial event associated with the efficacy of the triplet combination. Genetic depletion and pharmacological inhibition of GPR183 impaired ADCP initiation, cytoskeleton remodeling and cell migration in 2D and 3D spheroid B-NHL co-cultures, and disrupted macrophage-mediated control of tumor growth in B-NHL CAM xenografts. Conclusions: Altogether, our results support a crucial role for GPR183 in the recognition and elimination of malignant B cells upon concomitant targeting of CD20, CD47 and PI3Kδ, and warrant further clinical evaluation of this triplet regimen in B-NHL.


Asunto(s)
Anticuerpos Biespecíficos , Linfoma de Burkitt , Linfoma de Células B , Neoplasias , Embrión de Pollo , Humanos , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígeno CD47 , Neoplasias/metabolismo , Linfoma de Células B/tratamiento farmacológico , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Modelos Animales de Enfermedad , Receptores Acoplados a Proteínas G
6.
Cell Rep Med ; 4(4): 101006, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37044092

RESUMEN

Elucidating the adaptive mechanisms that prevent host immune response in cancer will help predict efficacy of anti-programmed death-1 (PD1)/L1 therapies. Here, we study the cell-intrinsic response of lung cancer (LC) to interferon-γ (IFNγ), a cytokine that promotes immunoresponse and modulates programmed death-ligand 1 (PD-L1) levels. We report complete refractoriness to IFNγ in a subset of LCs as a result of JAK2 or IFNGR1 inactivation. A submaximal response affects another subset that shows constitutive low levels of IFNγ-stimulated genes (IγSGs) coupled with decreased H3K27ac (histone 3 acetylation at lysine 27) deposition and promoter hypermethylation and reduced IFN regulatory factor 1 (IRF1) recruitment to the DNA on IFNγ stimulation. Most of these are neuroendocrine small cell LCs (SCLCs) with oncogenic MYC/MYCL1/MYCN. The oncogenic activation of MYC in SCLC cells downregulates JAK2 and impairs IγSGs stimulation by IFNγ. MYC amplification tends to associate with a worse response to anti-PD1/L1 therapies. Hence alterations affecting the JAK/STAT pathway and MYC activation prevent stimulation by IFNγ and may predict anti-PD1/L1 efficacy in LC.


Asunto(s)
Interferón gamma , Neoplasias Pulmonares , Humanos , Interferón gamma/genética , Transducción de Señal/genética , Antígeno B7-H1/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
7.
Clin Cancer Res ; 27(23): 6591-6601, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34551904

RESUMEN

PURPOSE: Despite the remarkable activity of BTK inhibitors (BTKi) in relapsed B-cell non-Hodgkin lymphoma (B-NHL), no clinically-relevant biomarker has been associated to these agents so far. The relevance of phosphoproteomic profiling for the early identification of BTKi responders remains underexplored. EXPERIMENTAL DESIGN: A set of six clinical samples from an ongoing phase I trial dosing patients with chronic lymphocytic leukemia (CLL) with TG-1701, a novel irreversible and highly specific BTKi, were characterized by phosphoproteomic and RNA sequencing (RNA-seq) analysis. The activity of TG-1701 was evaluated in a panel of 11 B-NHL cell lines and mouse xenografts, including two NF-κB- and BTKC481S-driven BTKi-resistant models. Biomarker validation and signal transduction analysis were conducted through real-time PCR, Western blot analysis, immunostaining, and gene knockout (KO) experiments. RESULTS: A nonsupervised, phosphoproteomic-based clustering did match the early clinical outcomes of patients with CLL and separated a group of "early-responders" from a group of "late-responders." This clustering was based on a selected list of 96 phosphosites with Ikaros-pSer442/445 as a potential biomarker for TG-1701 efficacy. TG-1701 treatment was further shown to blunt Ikaros gene signature, including YES1 and MYC, in early-responder patients as well as in BTKi-sensitive B-NHL cell lines and xenografts. In contrast, Ikaros nuclear activity and signaling remained unaffected by the drug in vitro and in vivo in late-responder patients and in BTKC481S, BTKKO, and noncanonical NF-κB models. CONCLUSIONS: These data validate phosphoproteomic as a valuable tool for the early detection of response to BTK inhibition in the clinic, and for the determination of drug mechanism of action.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma no Hodgkin , Agammaglobulinemia Tirosina Quinasa , Animales , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Linfoma no Hodgkin/tratamiento farmacológico , Ratones , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/farmacología , Pirimidinas/farmacología , Transducción de Señal
8.
Langmuir ; 26(7): 4865-72, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20131773

RESUMEN

We studied the process of thinning of thin liquid films stabilized with the nonionic surfactant n-dodecyl-beta-maltoside (beta-C(12)G(2)) with primary interest in interfacial diffusion processes during the thinning process dependent on surfactant concentration. The surfactant concentration in the film forming solutions was varied from 0.01 to 1.0 mM through the critical micellar concentration of 0.16 mM at constant electrolyte (NaCl) concentration, nominally 0.2 M. This assures the formation of Newton black films at the end of the thinning process. The velocity of thinning was analyzed combining previously developed theoretical approaches. From the model, which accounts for diffusion processes in the bulk of the film and in the interfaces, an analytical function was derived and fitted numerically to the experimental data. Quantitative information about the mobility of the surfactant molecules at the film surfaces could be obtained. We find that above a surfactant concentration of 0.12 mM (beta-C(12)G(2)) the film surfaces behave as immobile and nondeformable which decelerates the thinning process. This follows the predictions for Reynolds flow of liquid between two nondeformable disks. Moreover, we could apply the theory on free area dependent diffusion coefficients on our results and show that it is in reasonable ranges applicable on the used surfactant system.

9.
Mol Oncol ; 14(8): 1616-1639, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32526054

RESUMEN

The rapid advances in high-throughput sequencing technologies have made it more evident that epigenetic modifications orchestrate a plethora of complex biological processes. During the last decade, we have gained significant knowledge about a wide range of epigenetic changes that crucially contribute to some of the most aggressive forms of leukemia, lymphoma, and myelodysplastic syndromes. DNA methylation is a key epigenetic player in the abnormal initiation, development, and progression of these malignancies, often acting in synergy with other epigenetic alterations. It also contributes to the acquisition of drug resistance. In this review, we summarize the role of DNA methylation in hematological malignancies described in the current literature. We discuss in detail the dual role of DNA methylation in normal and aberrant hematopoiesis, as well as the involvement of this type of epigenetic change in other aspects of the disease. Finally, we present a comprehensive overview of the main clinical implications, including a discussion of the therapeutic strategies that regulate or reverse aberrant DNA methylation patterns in hematological malignancies, including their combination with (chemo)immunotherapy.


Asunto(s)
Metilación de ADN/genética , Neoplasias Hematológicas/genética , Animales , Epigénesis Genética , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/terapia , Hematopoyesis/genética , Humanos , Inmunoterapia , Pronóstico
10.
Langmuir ; 25(23): 13493-502, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19746938

RESUMEN

We study morphological transitions of droplets on a structured substrate containing two circular lyophilic domains for arbitrary domain and substrate wettabilities. We derive the stability criterion that at least one of the droplets must be pinned at the domain boundary with a contact angle smaller than (pi)/(2). This determines seven classes of stable or metastable droplet morphologies of the system. We present a complete classification of stability and metastability of these morphologies as a function of three control parameters as provided by the total droplet volume, substrate wettability, and domain wettability. We find different types of morphological transitions at the stability boundaries: (i) depinning transitions of the contact lines, (ii) symmetry-breaking transitions, where the two droplets acquire different volumes, and (iii) dewetting transitions, where one domain dewets and one of the droplets disappears. We find that depinning transitions of two droplets become discontinuous between two universal values of substrate wettability. Furthermore, below a critical domain wettability, one domain always dewets irrespective of the total volume. We discuss experimental realizations and applications of our results for controlled switching between observed wetting morphologies.


Asunto(s)
Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas Analíticas Microfluídicas , Modelos Químicos , Propiedades de Superficie , Termodinámica , Humectabilidad
11.
Science ; 364(6439): 485-491, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31048490

RESUMEN

Tumors with mismatch repair deficiency (MMR-d) are characterized by sequence alterations in microsatellites and can accumulate thousands of mutations. This high mutational burden renders tumors immunogenic and sensitive to programmed cell death-1 (PD-1) immune checkpoint inhibitors. Yet, despite their tumor immunogenicity, patients with MMR-deficient tumors experience highly variable responses, and roughly half are refractory to treatment. We present experimental and clinical evidence showing that the degree of microsatellite instability (MSI) and resultant mutational load, in part, underlies the variable response to PD-1 blockade immunotherapy in MMR-d human and mouse tumors. The extent of response is particularly associated with the accumulation of insertion-deletion (indel) mutational load. This study provides a rationale for the genome-wide characterization of MSI intensity and mutational load to better profile responses to anti-PD-1 immunotherapy across MMR-deficient human cancers.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Inmunoterapia/métodos , Inestabilidad de Microsatélites , Neoplasias/genética , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Animales , Anticuerpos/uso terapéutico , Variación Genética , Melanoma Experimental/genética , Melanoma Experimental/terapia , Ratones , Proteína 2 Homóloga a MutS/genética , Mutación , Resultado del Tratamiento
13.
NPJ Breast Cancer ; 5: 23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428676

RESUMEN

Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD.

14.
J Natl Cancer Inst ; 110(9): 1030-1034, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29506079

RESUMEN

Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama/genética , Heterocigoto , Mutación , Adulto , Anciano , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genómica/métodos , Mutación de Línea Germinal , Humanos , Persona de Mediana Edad , Secuenciación del Exoma
15.
Nat Commun ; 9(1): 3533, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166553

RESUMEN

Granular cell tumors (GCTs) are rare tumors that can arise in multiple anatomical locations, and are characterized by abundant intracytoplasmic granules. The genetic drivers of GCTs are currently unknown. Here, we apply whole-exome sequencing and targeted sequencing analysis to reveal mutually exclusive, clonal, inactivating somatic mutations in the endosomal pH regulators ATP6AP1 or ATP6AP2 in 72% of GCTs. Silencing of these genes in vitro results in impaired vesicle acidification, redistribution of endosomal compartments, and accumulation of intracytoplasmic granules, recapitulating the cardinal phenotypic characteristics of GCTs and providing a novel genotypic-phenotypic correlation. In addition, depletion of ATP6AP1 or ATP6AP2 results in the acquisition of oncogenic properties. Our results demonstrate that inactivating mutations of ATP6AP1 and ATP6AP2 are likely oncogenic drivers of GCTs and underpin the genesis of the intracytoplasmic granules that characterize them, providing a genetic link between endosomal pH regulation and tumorigenesis.


Asunto(s)
Tumor de Células Granulares/genética , Mutación/genética , Receptores de Superficie Celular/genética , ATPasas de Translocación de Protón Vacuolares/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Exoma , Femenino , Citometría de Flujo , Estudios de Asociación Genética , Células HEK293 , Humanos , Masculino
16.
Nat Commun ; 9(1): 1816, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739933

RESUMEN

Adenomyoepithelioma of the breast is a rare tumor characterized by epithelial-myoepithelial differentiation, whose genetic underpinning is largely unknown. Here we show through whole-exome and targeted massively parallel sequencing analysis that whilst estrogen receptor (ER)-positive adenomyoepitheliomas display PIK3CA or AKT1 activating mutations, ER-negative adenomyoepitheliomas harbor highly recurrent codon Q61 HRAS hotspot mutations, which co-occur with PIK3CA or PIK3R1 mutations. In two- and three-dimensional cell culture models, forced expression of HRASQ61R in non-malignant ER-negative breast epithelial cells with or without a PIK3CAH1047R somatic knock-in results in transformation and the acquisition of the cardinal features of adenomyoepitheliomas, including the expression of myoepithelial markers, a reduction in E-cadherin expression, and an increase in AKT signaling. Our results demonstrate that adenomyoepitheliomas are genetically heterogeneous, and qualify mutations in HRAS, a gene whose mutations are vanishingly rare in common-type breast cancers, as likely drivers of ER-negative adenomyoepitheliomas.


Asunto(s)
Adenomioepitelioma/genética , Adenomioepitelioma/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Genes ras , Mutación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Adenomioepitelioma/enzimología , Biomarcadores de Tumor/genética , Mama/citología , Mama/metabolismo , Neoplasias de la Mama/enzimología , Cadherinas/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Progresión de la Enfermedad , Activación Enzimática , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Humanos , Receptores de Estrógenos/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal , Secuenciación del Exoma
17.
Oncotarget ; 8(42): 71574-71586, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29069730

RESUMEN

Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression.

18.
Nat Commun ; 8(1): 857, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29021619

RESUMEN

BRCA1 and BRCA2 are involved in homologous recombination (HR) DNA repair and are germ-line cancer pre-disposition genes that result in a syndrome of hereditary breast and ovarian cancer (HBOC). Whether germ-line or somatic alterations in these genes or other members of the HR pathway and if mono- or bi-allelic alterations of HR-related genes have a phenotypic impact on other cancers remains to be fully elucidated. Here, we perform a pan-cancer analysis of The Cancer Genome Atlas (TCGA) data set and observe that bi-allelic pathogenic alterations in homologous recombination (HR) DNA repair-related genes are prevalent across many malignancies. These bi-allelic alterations often associate with genomic features of HR deficiency. Further, in ovarian, breast and prostate cancers, bi-allelic alterations are mutually exclusive of each other. The combination of these two properties facilitates reclassification of variants of unknown significance affecting DNA repair genes, and may help personalize HR directed therapies in the clinic.Germline mutations in homologous recombination (HR) DNA repair genes are linked to breast and ovarian cancer. Here, the authors show that mutually exclusive bi-allelic inactivation of HR genes are present in other cancer types and associated with genomic features of HR deficiency, expanding the potential use of HR-directed therapies.


Asunto(s)
Genes Relacionados con las Neoplasias , Neoplasias/genética , Reparación del ADN por Recombinación/genética , Humanos , Mutación Missense
19.
Cancer Discov ; 4(9): 1022-35, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25082755

RESUMEN

UNLABELLED: Despite the unprecedented clinical activity of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib in mantle cell lymphoma (MCL), acquired resistance is common. By longitudinal integrative whole-exome and whole-transcriptome sequencing and targeted sequencing, we identified the first relapse-specific C481S mutation at the ibrutinib binding site of BTK in MCL cells at progression following a durable response. This mutation enhanced BTK and AKT activation and tissue-specific proliferation of resistant MCL cells driven by CDK4 activation. It was absent, however, in patients with primary resistance or progression following transient response to ibrutinib, suggesting alternative mechanisms of resistance. Through synergistic induction of PIK3IP1 and inhibition of PI3K-AKT activation, prolonged early G1 arrest induced by PD 0332991 (palbociclib) inhibition of CDK4 sensitized resistant lymphoma cells to ibrutinib killing when BTK was unmutated, and to PI3K inhibitors independent of C481S mutation. These data identify a genomic basis for acquired ibrutinib resistance in MCL and suggest a strategy to override both primary and acquired ibrutinib resistance. SIGNIFICANCE: We have discovered the first relapse-specific BTK mutation in patients with MCL with acquired resistance, but not primary resistance, to ibrutinib, and demonstrated a rationale for targeting the proliferative resistant MCL cells by inhibiting CDK4 and the cell cycle in combination with ibrutinib in the presence of BTK(WT) or a PI3K inhibitor independent of BTK mutation. As drug resistance remains a major challenge and CDK4 and PI3K are dysregulated at a high frequency in human cancers, targeting CDK4 in genome-based combination therapy represents a novel approach to lymphoma and cancer therapy. Cancer Discov; 4(9); 1022-35. ©2014 AACR. This article is highlighted in the In This Issue feature, p. 973.


Asunto(s)
Ciclo Celular/genética , Genómica , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/metabolismo , Mutación , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Tirosina Quinasas/genética , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa , Sustitución de Aminoácidos , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Análisis Mutacional de ADN , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Activación Enzimática , Humanos , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/patología , FN-kappa B/metabolismo , Recurrencia Local de Neoplasia , Nitratos/farmacología , Nitratos/uso terapéutico , Piperidinas , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcr/metabolismo , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Transducción de Señal , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA