RESUMEN
AIM: We aimed to investigate the impact of microglial activity and microglial FDG uptake on metabolic connectivity, since microglial activation states determine FDG-PET alterations. Metabolic connectivity refers to a concept of interacting metabolic brain regions and receives growing interest in approaching complex cerebral metabolic networks in neurodegenerative diseases. However, underlying sources of metabolic connectivity remain to be elucidated. MATERIALS AND METHODS: We analyzed metabolic networks measured by interregional correlation coefficients (ICCs) of FDG-PET scans in WT mice and in mice with mutations in progranulin (Grn) or triggering receptor expressed on myeloid cells 2 (Trem2) knockouts (-/-) as well as in double mutant Grn-/-/Trem2-/- mice. We selected those rodent models as they represent opposite microglial signatures with disease associated microglia in Grn-/- mice and microglia locked in a homeostatic state in Trem2-/- mice; however, both resulting in lower glucose uptake of the brain. The direct influence of microglia on metabolic networks was further determined by microglia depletion using a CSF1R inhibitor in WT mice at two different ages. Within maps of global mean scaled regional FDG uptake, 24 pre-established volumes of interest were applied and assigned to either cortical or subcortical networks. ICCs of all region pairs were calculated and z-transformed prior to group comparisons. FDG uptake of neurons, microglia, and astrocytes was determined in Grn-/- and WT mice via assessment of single cell tracer uptake (scRadiotracing). RESULTS: Microglia depletion by CSF1R inhibition resulted in a strong decrease of metabolic connectivity defined by decrease of mean cortical ICCs in WT mice at both ages studied (6-7 m; p = 0.0148, 9-10 m; p = 0.0191), when compared to vehicle-treated age-matched WT mice. Grn-/-, Trem2-/- and Grn-/-/Trem2-/- mice all displayed reduced FDG-PET signals when compared to WT mice. However, when analyzing metabolic networks, a distinct increase of ICCs was observed in Grn-/- mice when compared to WT mice in cortical (p < 0.0001) and hippocampal (p < 0.0001) networks. In contrast, Trem2-/- mice did not show significant alterations in metabolic connectivity when compared to WT. Furthermore, the increased metabolic connectivity in Grn-/- mice was completely suppressed in Grn-/-/Trem2-/- mice. Grn-/- mice exhibited a severe loss of neuronal FDG uptake (- 61%, p < 0.0001) which shifted allocation of cellular brain FDG uptake to microglia (42% in Grn-/- vs. 22% in WT). CONCLUSIONS: Presence, absence, and activation of microglia have a strong impact on metabolic connectivity of the mouse brain. Enhanced metabolic connectivity is associated with increased microglial FDG allocation.
Asunto(s)
Fluorodesoxiglucosa F18 , Microglía , Animales , Ratones , Microglía/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Progranulinas/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismoRESUMEN
BACKGROUND: In Alzheimer`s disease (AD), regional heterogeneity of ß-amyloid burden and microglial activation of individual patients is a well-known phenomenon. Recently, we described a high incidence of inter-individual regional heterogeneity in terms of asymmetry of plaque burden and microglial activation in ß-amyloid mouse models of AD as assessed by positron-emission-tomography (PET). We now investigate the regional associations between amyloid plaque burden, microglial activation, and impaired spatial learning performance in transgenic mice in vivo. METHODS: In 30 AppNL-G-F mice (15 female, 15 male) we acquired cross-sectional 18 kDa translocator protein (TSPO-PET, 18F-GE-180) and ß-amyloid-PET (18F-florbetaben) scans at ten months of age. Control data were obtained from age- and sex-matched C57BI/6 wild-type mice. We assessed spatial learning (i.e. Morris water maze) within two weeks of PET scanning and correlated the principal component of spatial learning performance scores with voxel-wise ß-amyloid and TSPO tracer uptake maps in AppNL-G-F mice, controlled for age and sex. In order to assess the effects of hemispheric asymmetry, we also analyzed correlations of spatial learning performance with tracer uptake in bilateral regions of interest for frontal cortex, entorhinal/piriform cortex, amygdala, and hippocampus, using a regression model. We tested the correlation between regional asymmetry of PET biomarkers with individual spatial learning performance. RESULTS: Voxel-wise analyses in AppNL-G-F mice revealed that higher TSPO-PET signal in the amygdala, entorhinal and piriform cortices, the hippocampus and the hypothalamus correlated with spatial learning performance. Region-based analysis showed significant correlations between TSPO expression in the right entorhinal/piriform cortex and the right amygdala and spatial learning performance, whereas there were no such correlations in the left hemisphere. Right lateralized TSPO expression in the amygdala predicted better performance in the Morris water maze (ßâ¯=â¯-0.470, pâ¯=â¯0.013), irrespective of the global microglial activation and amyloid level. Region-based results for amyloid-PET showed no significant associations with spatial learning. CONCLUSION: Elevated microglial activation in the right amygdala-entorhinal-hippocampal complex of AppNL-G-F mice is associated with better spatial learning. Our findings support a protective role of microglia on cognitive function when they highly express TSPO in specific brain regions involved in spatial memory.
Asunto(s)
Amígdala del Cerebelo/metabolismo , Precursor de Proteína beta-Amiloide/biosíntesis , Corteza Entorrinal/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo , Aprendizaje Espacial/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/biosíntesis , Receptores de GABA/genéticaRESUMEN
BACKGROUND: Neuroinflammation has received growing interest as a therapeutic target in neurodegenerative disorders, including 4-repeat tauopathies. OBJECTIVES: The aim of this cross-sectional study was to investigate 18 kDa translocator protein positron emission tomography (PET) as a biomarker for microglial activation in the 4-repeat tauopathies corticobasal degeneration and progressive supranuclear palsy. METHODS: Specific binding of the 18 kDa translocator protein tracer 18 F-GE-180 was determined by serial PET during pharmacological depletion of microglia in a 4-repeat tau mouse model. The 18 kDa translocator protein PET was performed in 30 patients with corticobasal syndrome (68 ± 9 years, 16 women) and 14 patients with progressive supranuclear palsy (69 ± 9 years, 8 women), and 13 control subjects (70 ± 7 years, 7 women). Group comparisons and associations with parameters of disease progression were assessed by region-based and voxel-wise analyses. RESULTS: Tracer binding was significantly reduced after pharmacological depletion of microglia in 4-repeat tau mice. Elevated 18 kDa translocator protein labeling was observed in the subcortical brain areas of patients with corticobasal syndrome and progressive supranuclear palsy when compared with controls and was most pronounced in the globus pallidus internus, whereas only patients with corticobasal syndrome showed additionally elevated tracer binding in motor and supplemental motor areas. The 18 kDa translocator protein labeling was not correlated with parameters of disease progression in corticobasal syndrome and progressive supranuclear palsy but allowed sensitive detection in patients with 4-repeat tauopathies by a multiregion classifier. CONCLUSIONS: Our data indicate that 18 F-GE-180 PET detects microglial activation in the brain of patients with 4-repeat tauopathy, fitting to predilection sites of the phenotype. The 18 kDa translocator protein PET has a potential for monitoring neuroinflammation in 4-repeat tauopathies. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Alzheimer , Parálisis Supranuclear Progresiva , Tauopatías , Anciano , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Estudios Transversales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/genética , Tauopatías/diagnóstico por imagen , Tauopatías/genética , Proteínas tau/genética , Proteínas tau/metabolismoRESUMEN
BACKGROUND: In vivo assessment of neuroinflammation by 18-kDa translocator protein positron-emission-tomography (TSPO-PET) ligands receives growing interest in preclinical and clinical research of neurodegenerative disorders. Higher TSPO-PET binding as a surrogate for microglial activation in females has been reported for cognitively normal humans, but such effects have not yet been evaluated in rodent models of neurodegeneration and their controls. Thus, we aimed to investigate the impact of sex on microglial activation in amyloid and tau mouse models and wild-type controls. METHODS: TSPO-PET (18F-GE-180) data of C57Bl/6 (wild-type), AppNL-G-F (ß-amyloid model), and P301S (tau model) mice was assessed longitudinally between 2 and 12 months of age. The AppNL-G-F group also underwent longitudinal ß-amyloid-PET imaging (Aß-PET; 18F-florbetaben). PET results were confirmed and validated by immunohistochemical investigation of microglial (Iba-1, CD68), astrocytic (GFAP), and tau (AT8) markers. Findings in cerebral cortex were compared by sex using linear mixed models for PET data and analysis of variance for immunohistochemistry. RESULTS: Wild-type mice showed an increased TSPO-PET signal over time (female +23%, male +4%), with a significant sex × age interaction (T = - 4.171, p < 0.001). The Aß model AppNL-G-F mice also showed a significant sex × age interaction (T = - 2.953, p = 0.0048), where cortical TSPO-PET values increased by 31% in female AppNL-G-F mice, versus only 6% in the male mice group from 2.5 to 10 months of age. Immunohistochemistry for the microglial markers Iba-1 and CD68 confirmed the TSPO-PET findings in male and female mice aged 10 months. Aß-PET in the same AppNL-G-F mice indicated no significant sex × age interaction (T = 0.425, p = 0.673). The P301S tau model showed strong cortical increases of TSPO-PET from 2 to 8.5 months of age (female + 32%, male + 36%), without any significant sex × age interaction (T = - 0.671, p = 0.504), and no sex differences in Iba-1, CD68, or AT8 immunohistochemistry. CONCLUSION: Female mice indicate sex-dependent microglia activation in aging and in response to amyloidosis but not in response to tau pathology. This calls for consideration of sex difference in TSPO-PET studies of microglial activation in mouse models of neurodegeneration and by extension in human studies.
Asunto(s)
Amiloidosis/metabolismo , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/metabolismo , Neuroglía/metabolismo , Caracteres Sexuales , Proteínas tau/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Amiloidosis/genética , Amiloidosis/patología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuroglía/patología , Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/tendencias , Proteínas tau/genéticaRESUMEN
BACKGROUND: P301S tau transgenic mice show age-dependent accumulation of neurofibrillary tangles in the brainstem, hippocampus, and neocortex, leading to neuronal loss and cognitive deterioration. However, there is hitherto only sparse documentation of the role of neuroinflammation in tau mouse models. Thus, we analyzed longitudinal microglial activation by small animal 18 kDa translocator protein positron-emission-tomography (TSPO µPET) imaging in vivo, in conjunction with terminal assessment of tau pathology, spatial learning, and cerebral glucose metabolism. METHODS: Transgenic P301S (n = 33) and wild-type (n = 18) female mice were imaged by 18F-GE-180 TSPO µPET at the ages of 1.9, 3.9, and 6.4 months. We conducted behavioral testing in the Morris water maze, 18F-fluordesoxyglucose (18F-FDG) µPET, and AT8 tau immunohistochemistry at 6.3-6.7 months. Terminal microglial immunohistochemistry served for validation of TSPO µPET results in vivo, applying target regions in the brainstem, cortex, cerebellum, and hippocampus. We compared the results with our historical data in amyloid-ß mouse models. RESULTS: TSPO expression in all target regions of P301S mice increased exponentially from 1.9 to 6.4 months, leading to significant differences in the contrasts with wild-type mice at 6.4 months (+ 11-23%, all p < 0.001), but the apparent microgliosis proceeded more slowly than in our experience in amyloid-ß mouse models. Spatial learning and glucose metabolism of AT8-positive P301S mice were significantly impaired at 6.3-6.5 months compared to the wild-type group. Longitudinal increases in TSPO expression predicted greater tau accumulation and lesser spatial learning performance at 6.3-6.7 months. CONCLUSIONS: Monitoring of TSPO expression as a surrogate of microglial activation in P301S tau transgenic mice by µPET indicates a delayed time course when compared to amyloid-ß mouse models. Detrimental associations of microglial activation with outcome parameters are opposite to earlier data in amyloid-ß mouse models. The contribution of microglial response to pathology accompanying amyloid-ß and tau over-expression merits further investigation.
Asunto(s)
Encéfalo/metabolismo , Receptores de GABA/biosíntesis , Aprendizaje Espacial/fisiología , Proteínas tau/metabolismo , Animales , Encéfalo/patología , Femenino , Predicción , Expresión Génica , Ratones , Ratones Transgénicos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Receptores de GABA/genética , Proteínas tau/genéticaRESUMEN
OBJECTIVES: PET imaging of the 18 kDa translocator protein (TSPO), a biomarker of microglial activity, receives growing interest in clinical and preclinical applications of neuroinflammatory and neurodegenerative brain diseases. In globally affected brains, intra-cerebral pseudo reference regions are not feasible. Consequently, many brain-independent approaches have been attempted, including SUV analysis and normalization to muscle- or heart uptake, aiming to stabilize quantitative analysis. In this study, we systematically compared different image normalization methods for static late phase TSPO-PET imaging of rodent brain. METHODS: We first obtained gamma counter measurements for gold standard quantitation of [18F]GE180 uptake in brain of C57Bl/6 mice (N = 10) after PET, aiming to identify factors contributing significantly to the quantitative results. Subsequently, data from a large cohort of C57Bl/6 mice (N = 79) were compiled to precisely determine the weighted influence and variance attributable these factors by regression analysis. Scan-rescan variability and agreement with histology were used to validate the tested normalization methods in an Alzheimer's disease (AD) mouse model with pathologically increased TSPO expression (PS2APP; N = 24). Longitudinal data from AD model mice (N = 10) scanned at four different ages were used to challenge and validate the different normalization methods in a practical application. RESULTS: Gamma counter results revealed that injected dose, body weight and PET-measured radioactivity concentration in the ventral myocardium all significantly accounted for [18F]GE180 activity in the brain. Skeletal muscle activity had high test-retest variance in this PET only application and was therefore pursued no further. Regression analysis of the large scale evaluation showed that scaling to injected dose or SUV analysis accounted for little variance in brain activity (R2 < 0.5), but inclusion of myocardial activity together with injected dose and body weight in the regression model accounted for most of the variance in brain uptake (R2 = 0.94). Scan-rescan stability, correlation with histology and applicability for longitudinal examination in the disease model were also significantly improved by inclusion of myocadial uptake in the quantitative model. CONCLUSION: Cerebral and myocardial TSPO expression are highly coupled under physiological conditions. Myocardial uptake has great potential for stabilization of static late phase [18F]GE180 quantification in brain in the absence of a valid intra-cerebral pseudo-reference region.
Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/análisis , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Femenino , Radioisótopos de Flúor , Corazón/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Miocardio , Neuroimagen/métodos , Cintigrafía/métodos , RadiofármacosRESUMEN
BACKGROUND: Causal associations between microglia activation and ß-amyloid (Aß) accumulation during the progression of Alzheimer's disease (AD) remain a matter of controversy. Therefore, we used longitudinal dual tracer in vivo small animal positron emission tomography (µPET) imaging to resolve the progression of the association between Aß deposition and microglial responses during aging of an Aß mouse model. METHODS: APP-SL70 mice (N = 17; baseline age 3.2-8.5 months) and age-matched C57Bl/6 controls (wildtype (wt)) were investigated longitudinally for 6 months using Aß (18F-florbetaben) and 18 kDa translocator protein (TSPO) µPET (18F-GE180). Changes in cortical binding were transformed to Z-scores relative to wt mice, and microglial activation relative to amyloidosis was defined as the Z-score difference (TSPO-Aß). Using 3D immunohistochemistry for activated microglia (Iba-1) and histology for fibrillary Aß (methoxy-X04), we measure microglial brain fraction relative to plaque size and the distance from plaque margins. RESULTS: Aß-PET binding increased exponentially as a function of age in APP-SL70 mice, whereas TSPO binding had an inverse U-shape growth function. Longitudinal Z-score differences declined with aging, suggesting that microglial response declined relative to increasing amyloidosis in aging APP-SL70 mice. Microglial brain volume fraction was inversely related to adjacent plaque size, while the proximity to Aß plaques increased with age. CONCLUSIONS: Microglial activity decreases relative to ongoing amyloidosis with aging in APP-SL70 mice. The plaque-associated microglial brain fraction saturated and correlated negatively with increasing plaque size with aging.
Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Tomografía de Emisión de Positrones , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidosis/diagnóstico por imagen , Animales , Proteínas de Unión al Calcio/metabolismo , Carbazoles/farmacocinética , Modelos Animales de Enfermedad , Fluorodesoxiglucosa F18/farmacocinética , Estudios Longitudinales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Radioquímica , Receptores de GABA/metabolismoRESUMEN
BACE1 is the rate-limiting protease in the production of synaptotoxic ß-amyloid (Aß) species and hence one of the prime drug targets for potential therapy of Alzheimer's disease (AD). However, so far pharmacological BACE1 inhibition failed to rescue the cognitive decline in mild-to-moderate AD patients, which indicates that treatment at the symptomatic stage might be too late. In the current study, chronic in vivo two-photon microscopy was performed in a transgenic AD model to monitor the impact of pharmacological BACE1 inhibition on early ß-amyloid pathology. The longitudinal approach allowed to assess the kinetics of individual plaques and associated presynaptic pathology, before and throughout treatment. BACE1 inhibition could not halt but slow down progressive ß-amyloid deposition and associated synaptic pathology. Notably, the data revealed that the initial process of plaque formation, rather than the subsequent phase of gradual plaque growth, is most sensitive to BACE1 inhibition. This finding of particular susceptibility of plaque formation has profound implications to achieve optimal therapeutic efficacy for the prospective treatment of AD.
Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Encéfalo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/metabolismo , Ácidos Picolínicos/farmacología , Tiazinas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Masculino , Ratones Transgénicos , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/metabolismo , Placa Amiloide/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismoRESUMEN
All clinical BACE1-inhibitor trials for the treatment of Alzheimer's Disease (AD) have failed due to insufficient efficacy or side effects like worsening of cognitive symptoms. However, the scientific evidence to date suggests that BACE1-inhibition could be an effective preventative measure if applied prior to the accumulation of amyloid-beta (Aß)-peptide and resultant impairment of synaptic function. Preclinical studies have associated BACE1-inhibition-induced cognitive deficits with decreased dendritic spine density. Therefore, we investigated dose-dependent effects of BACE1-inhibition on hippocampal dendritic spine dynamics in an APP knock-in mouse line for the first time. We conducted in vivo two-photon microscopy in the stratum oriens layer of hippocampal CA1 neurons in 3.5-month-old App NL-G-F GFP-M mice over 6 weeks to monitor the effect of potential preventive treatment with a high and low dose of the BACE1-inhibitor NB-360 on dendritic spine dynamics. Structural spine plasticity was severely impaired in untreated App NL-G-F GFP-M mice, although spines were not yet showing signs of degeneration. Prolonged high-dose BACE1-inhibition significantly enhanced spine formation, improving spine dynamics in the AD mouse model. We conclude that in an early AD stage characterized by low Aß-accumulation and no irreversible spine loss, BACE1-inhibition could hold the progressive synapse loss and cognitive decline by improving structural spine dynamics.
RESUMEN
ß-amyloid (Aß) PET is an important tool for quantification of amyloidosis in the brain of suspected Alzheimer disease (AD) patients and transgenic AD mouse models. Despite the excellent correlation of Aß PET with gold standard immunohistochemical assessments, the relative contributions of fibrillar and nonfibrillar Aß components to the in vivo Aß PET signal remain unclear. Thus, we obtained 2 murine cerebral amyloidosis models that present with distinct Aß plaque compositions and performed regression analysis between immunohistochemistry and Aß PET to determine the biochemical contributions to Aß PET signal in vivo. Methods: We investigated groups of AppNL-G-F and APPPS1 mice at 3, 6, and 12 mo of age by longitudinal 18F-florbetaben Aß PET and with immunohistochemical analysis of the fibrillar and total Aß burdens. We then applied group-level intermodality regression models using age- and genotype-matched sets of fibrillar and nonfibrillar Aß data (predictors) and Aß PET results (outcome) for both Aß mouse models. An independent group of double-hit APPPS1 mice with dysfunctional microglia due to knockout of triggering receptor expression on myeloid cells 2 (Trem2-/-) served for validation and evaluation of translational impact. Results: Neither fibrillar nor nonfibrillar Aß content alone sufficed to explain the Aß PET findings in either AD model. However, a regression model compiling fibrillar and nonfibrillar Aß together with the estimate of individual heterogeneity and age at scanning could explain a 93% of variance of the Aß PET signal (P < 0.001). Fibrillar Aß burden had a 16-fold higher contribution to the Aß PET signal than nonfibrillar Aß. However, given the relatively greater abundance of nonfibrillar Aß, we estimate that nonfibrillar Aß produced 79% ± 25% of the net in vivo Aß PET signal in AppNL-G-F mice and 25% ± 12% in APPPS1 mice. Corresponding results in separate groups of APPPS1/Trem2-/- and APPPS1/Trem2+/+ mice validated the calculated regression factors and revealed that the altered fibrillarity due to Trem2 knockout impacts the Aß PET signal. Conclusion: Taken together, the in vivo Aß PET signal derives from the composite of fibrillar and nonfibrillar Aß plaque components. Although fibrillar Aß has inherently higher PET tracer binding, the greater abundance of nonfibrillar Aß plaque in AD-model mice contributes importantly to the PET signal.
Asunto(s)
Placa AmiloideRESUMEN
We undertook longitudinal ß-amyloid positron emission tomography (Aß-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aß model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aß-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and App NL-G-F mice (N = 37; baseline age: 5 months) using Aß-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aß-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aß-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aß-PET signal upon immunomodulatory treatments targeting Aß aggregation can thus be protective.
RESUMEN
Modulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer's disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Methods: Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of the peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F ). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and ß-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Results: Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R = -0.874, p < 0.0001) but not in vehicle controls (R = -0.356, p = 0.081). Reduced TSPO-PET signal upon pharmacological treatment was associated with better spatial learning despite higher fibrillar ß-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R = 0.952, p < 0.0001). Conclusion: TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Sex and pre-therapeutic assessment of baseline microglial activation predict individual immunomodulation effects and may serve for responder stratification.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Receptores de GABA/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunidad Innata/inmunología , Inmunomodulación/inmunología , Inmunomodulación/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , PPAR gamma/efectos de los fármacos , PPAR gamma/metabolismo , Pioglitazona/farmacología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/fisiología , Factores SexualesRESUMEN
2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) is widely used to study cerebral glucose metabolism. Here, we investigated whether the FDG-PET signal is directly influenced by microglial glucose uptake in mouse models and patients with neurodegenerative diseases. Using a recently developed approach for cell sorting after FDG injection, we found that, at cellular resolution, microglia displayed higher glucose uptake than neurons and astrocytes. Alterations in microglial glucose uptake were responsible for both the FDG-PET signal decrease in Trem2-deficient mice and the FDG-PET signal increase in mouse models for amyloidosis. Thus, opposite microglial activation states determine the differential FDG uptake. Consistently, 12 patients with Alzheimer's disease and 21 patients with four-repeat tauopathies also exhibited a positive association between glucose uptake and microglial activity as determined by 18F-GE-180 18-kDa translocator protein PET (TSPO-PET) in preserved brain regions, indicating that the cerebral glucose uptake in humans is also strongly influenced by microglial activity. Our findings suggest that microglia activation states are responsible for FDG-PET signal alterations in patients with neurodegenerative diseases and mouse models for amyloidosis. Microglial activation states should therefore be considered when performing FDG-PET.
Asunto(s)
Fluorodesoxiglucosa F18 , Enfermedades Neurodegenerativas , Humanos , Glucosa , Microglía , Enfermedades Neurodegenerativas/diagnóstico por imagen , Tomografía de Emisión de Positrones , Animales , RatonesRESUMEN
Microglia activation is the brain's major immune response to amyloid plaques in Alzheimer's disease (AD). Both cerebrospinal fluid (CSF) levels of soluble TREM2 (sTREM2), a biomarker of microglia activation, and microglia PET are increased in AD; however, whether an increase in these biomarkers is associated with reduced amyloid-beta (Aß) accumulation remains unclear. To address this question, we pursued a two-pronged translational approach. Firstly, in non-demented and demented individuals, we tested CSF sTREM2 at baseline to predict (i) amyloid PET changes over â¼2 years and (ii) tau PET cross-sectionally assessed in a subset of patients. We found higher CSF sTREM2 associated with attenuated amyloid PET increase and lower tau PET. Secondly, in the AppNL-G-F mouse model of amyloidosis, we studied baseline 18 F-GE180 microglia PET and longitudinal amyloid PET to test the microglia vs. Aß association, without any confounding co-pathologies often present in AD patients. Higher microglia PET at age 5 months was associated with a slower amyloid PET increase between ages 5-to-10 months. In conclusion, higher microglia activation as determined by CSF sTREM2 or microglia PET shows protective effects on subsequent amyloid accumulation.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Biomarcadores , Humanos , Glicoproteínas de Membrana , Ratones , Microglía , Receptores Inmunológicos , Proteínas tauRESUMEN
Asymmetries of amyloid-ß (Aß) burden are well known in Alzheimer disease (AD) but did not receive attention in Aß mouse models of Alzheimer disease. Therefore, we investigated Aß asymmetries in Aß mouse models examined by Aß small-animal PET and tested if such asymmetries have an association with microglial activation. Methods: We analyzed 523 cross-sectional Aß PET scans of 5 different Aß mouse models (APP/PS1, PS2APP, APP-SL70, AppNL-G-F , and APPswe) together with 136 18-kDa translocator protein (TSPO) PET scans for microglial activation. The asymmetry index (AI) was calculated between tracer uptake in both hemispheres. AIs of Aß PET were analyzed in correlation with TSPO PET AIs. Extrapolated required sample sizes were compared between analyses of single and combined hemispheres. Results: Relevant asymmetries of Aß deposition were identified in at least 30% of all investigated mice. There was a significant correlation between AIs of Aß PET and TSPO PET in 4 investigated Aß mouse models (APP/PS1: R = 0.593, P = 0.001; PS2APP: R = 0.485, P = 0.019; APP-SL70: R = 0.410, P = 0.037; AppNL-G-F : R = 0.385, P = 0.002). Asymmetry was associated with higher variance of tracer uptake in single hemispheres, leading to higher required sample sizes. Conclusion: Asymmetry of fibrillar plaque neuropathology occurs frequently in Aß mouse models and acts as a potential confounder in experimental designs. Concomitant asymmetry of microglial activation indicates a neuroinflammatory component to hemispheric predominance of fibrillary amyloidosis.
Asunto(s)
Péptidos beta-Amiloides/química , Placa Amiloide/metabolismo , Agregado de Proteínas , Animales , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Placa Amiloide/diagnóstico por imagen , Tomografía de Emisión de PositronesRESUMEN
Neuroinflammation may have beneficial or detrimental net effects on the cognitive outcome of Alzheimer disease (AD) patients. PET imaging with 18-kDa translocator protein (TSPO) enables longitudinal monitoring of microglial activation in vivo. Methods: We compiled serial PET measures of TSPO and amyloid with terminal cognitive assessment (water maze) in an AD transgenic mouse model (PS2APP) from 8 to 13 mo of age, followed by immunohistochemical analyses of microglia, amyloid, and synaptic density. Results: Better cognitive outcome and higher synaptic density in PS2APP mice was predicted by higher TSPO expression at 8 mo. The progression of TSPO activation to 13 mo also showed a moderate association with spared cognition, but amyloidosis did not correlate with the cognitive outcome, regardless of the time point. Conclusion: This first PET investigation with longitudinal TSPO and amyloid PET together with terminal cognitive testing in an AD mouse model indicates that continuing microglial response seems to impart preserved cognitive performance.
Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Cognición , Microglía/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Proteínas Amiloidogénicas/metabolismo , Animales , Femenino , Estudios Longitudinales , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tomografía de Emisión de Positrones , Pronóstico , Receptores de GABA/metabolismoRESUMEN
Nonphysiologic overexpression of amyloid-ß (Aß) precursor protein in common transgenic Aß mouse models of Alzheimer disease likely hampers their translational potential. The novel AppNL-G-F mouse incorporates a mutated knock-in, potentially presenting an improved model of Alzheimer disease for Aß-targeting treatment trials. We aimed to establish serial small-animal PET of amyloidosis and neuroinflammation in AppNL-G-F mice as a tool for therapy monitoring. Methods:AppNL-G-F mice (20 homozygous and 21 heterogeneous) and 12 age-matched wild-type mice were investigated longitudinally from 2.5 to 10 mo of age with 18F-florbetaben Aß PET and 18F-GE-180 18-kDa translocator protein (TSPO) PET. Voxelwise analysis of SUV ratio images was performed using statistical parametric mapping. All mice underwent a Morris water maze test of spatial learning after their final scan. Quantification of fibrillar Aß and activated microglia by immunohistochemistry and biochemistry served for validation of the PET results. Results: The periaqueductal gray emerged as a suitable pseudo reference tissue for both tracers. Homozygous AppNL-G-F mice had a rising SUV ratio in cortex and hippocampus for Aß (+9.1%, +3.8%) and TSPO (+19.8%, +14.2%) PET from 2.5 to 10 mo of age (all P < 0.05), whereas heterozygous AppNL-G-F mice did not show significant changes with age. Significant voxelwise clusters of Aß deposition and microglial activation in homozygous mice appeared at 5 mo of age. Immunohistochemical and biochemical findings correlated strongly with the PET data. Water maze escape latency was significantly elevated in homozygous AppNL-G-F mice compared with wild-type at 10 mo of age and was associated with high TSPO binding. Conclusion: Longitudinal PET in AppNL-G-F knock-in mice enables monitoring of amyloidogenesis and neuroinflammation in homozygous mice but is insensitive to minor changes in heterozygous animals. The combination of PET with behavioral tasks in AppNL-G-F treatment trials is poised to provide important insights in preclinical drug development.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , Amiloidosis/diagnóstico por imagen , Amiloidosis/patología , Microglía/patología , Tomografía de Emisión de Positrones , Animales , Modelos Animales de Enfermedad , Femenino , Estudios Longitudinales , Masculino , RatonesRESUMEN
BACKGROUND: Augmenting the brain clearance of toxic oligomers with small molecule modulators constitutes a promising therapeutic concept against tau deposition. However, there has been no test of this concept in animal models of Alzheimer's disease (AD) with initiation at a late disease stage. Thus, we aimed to investigate the effects of interventional late-stage Anle138b treatment, which previously indicated great potential to inhibit oligomer accumulation by binding of pathological aggregates, on the metabolic decline in transgenic mice with established tauopathy in a longitudinal 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) study. METHODS: Twelve transgenic mice expressing all six human tau isoforms (hTau) and ten controls were imaged by FDG-PET at baseline (14.5 months), followed by randomization into Anle138b treatment and vehicle groups for 3 months. FDG-PET was repeated after treatment for 3 months, and brains were analyzed by tau immunohistochemistry. Longitudinal changes of glucose metabolism were compared between study groups, and the end point tau load was correlated with individual FDG-PET findings. RESULTS: Tau pathology was significantly ameliorated by late-stage Anle138b treatment when compared to vehicle (frontal cortex - 53%, p < 0.001; hippocampus - 59%, p < 0.005). FDG-PET revealed a reversal of metabolic decline during Anle138b treatment, whereas the vehicle group showed ongoing deterioration. End point glucose metabolism in the brain of hTau mice had a strong correlation with tau deposition measured by immunohistochemistry (R = 0.92, p < 0.001). CONCLUSION: Late-stage oligomer modulation effectively ameliorated tau pathology in hTau mice and rescued metabolic function. Molecular imaging by FDG-PET can serve for monitoring effects of Anle138b treatment.
Asunto(s)
Enfermedad de Alzheimer , Benzodioxoles , Ovillos Neurofibrilares , Pirazoles , Proteínas tau , Animales , Femenino , Humanos , Ratones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Benzodioxoles/administración & dosificación , Benzodioxoles/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones Transgénicos , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/metabolismo , Tomografía de Emisión de Positrones , Pirazoles/administración & dosificación , Pirazoles/farmacología , Proteínas tau/metabolismoRESUMEN
Beta-site amyloid-precursor-protein cleaving enzyme 1 (BACE1) is the rate limiting protease in the production of the amyloid-beta peptide (Aß), which is considered to be the causative agent in the pathogenesis of Alzheimer's Disease (AD). Therefore, the therapeutic potential of pharmacological BACE1 inhibitors is currently tested in clinical trials for AD treatment. To ensure a positive clinical outcome it is crucial to identify and evaluate adverse effects associated with BACE1 inhibition. Preclinical studies show that chronic blockade of BACE1 activity alters synaptic functions and leads to loss of dendritic spines. To assess the mechanism of synapse loss, dendritic spine dynamics of pyramidal layer V cells were monitored by in vivo two-photon microscopy in the somatosensory cortex of mice, treated with the BACE1 inhibitor MK-8931. MK-8931 treatment significantly reduced levels of Aß40 and density of dendritic spines in the brain. However, the steady decline in dendritic spine density specifically resulted from a diminished formation of new spines and not from a loss of stable spines. Furthermore, the described effects on spine formation were transient and recovered after inhibitor withdrawal. Since MK-8931 inhibition did not completely abolish spine formation, our findings suggest that carefully dosed inhibitors might be therapeutically effective without affecting the structural integrity of excitatory synapses if given at an early disease stage.