Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 561(7723): 416-419, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30209390

RESUMEN

CRISPR-Cas genome-editing nucleases hold substantial promise for developing human therapeutic applications1-6 but identifying unwanted off-target mutations is important for clinical translation7. A well-validated method that can reliably identify off-targets in vivo has not been described to date, which means it is currently unclear whether and how frequently these mutations occur. Here we describe 'verification of in vivo off-targets' (VIVO), a highly sensitive strategy that can robustly identify the genome-wide off-target effects of CRISPR-Cas nucleases in vivo. We use VIVO and a guide RNA deliberately designed to be promiscuous to show that CRISPR-Cas nucleases can induce substantial off-target mutations in mouse livers in vivo. More importantly, we also use VIVO to show that appropriately designed guide RNAs can direct efficient in vivo editing in mouse livers with no detectable off-target mutations. VIVO provides a general strategy for defining and quantifying the off-target effects of gene-editing nucleases in whole organisms, thereby providing a blueprint to foster the development of therapeutic strategies that use in vivo gene editing.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Edición Génica/normas , Genoma/genética , Mutación , Especificidad por Sustrato/genética , Animales , Proteínas Asociadas a CRISPR/genética , Femenino , Humanos , Mutación INDEL , Masculino , Ratones , Ratones Endogámicos C57BL , Proproteína Convertasa 9/genética , Transgenes/genética
2.
J Transl Med ; 21(1): 158, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855120

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapies for the treatment of hematological malignancies experienced tremendous progress in the last decade. However, essential limitations need to be addressed to further improve efficacy and reduce toxicity to assure CAR-T cell persistence, trafficking to the tumor site, resistance to an hostile tumor microenvironment (TME), and containment of toxicity restricting production of powerful but potentially toxic bioproducts to the TME; the last could be achieved through contextual release upon tumor antigen encounter of factors capable of converting an immune suppressive TME into one conducive to immune rejection. METHODS: We created an HER2-targeting CAR-T (RB-312) using a clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) system, which induces the expression of the IL-12 heterodimer via conditional transcription of its two endogenous subunits p35 and p40. This circuit includes two lentiviral constructs. The first one (HER2-TEV) expresses an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3z co-stimulatory domains linked to the tobacco etch virus (TEV) protease and two single guide RNAs (sgRNA) targeting the interleukin (IL)-12A and IL12B transcription start site (TSS), respectively. The second construct (LdCV) encodes linker for activation of T cells (LAT) fused to nuclease-deactivated Streptococcus Pyogenes Cas9 (dCas9)-VP64-p65-Rta (VPR) via a TEV-cleavable sequence (TCS). Activation of the CAR brings HER2-TEV in close proximity to LdCV releasing dCas9 for nuclear localization. This conditional circuit leads to conditional and reversible induction of the IL-12/p70 heterodimer. RB-312 was compared in vitro to controls (cRB-312), lacking the IL-12 sgRNAs and conventional HER2 CAR (convCAR). RESULTS: The inducible CRISPRa system activated endogenous IL-12 expression resulting in enhanced secondary interferon (FN)-γ production, cytotoxicity, and CAR-T proliferation in vitro, prolonged in vivo persistence and greater suppression of HER2+ FaDu oropharyngeal cancer cell growth compared to the conventional CAR-T cell product. No systemic IL-12 was detected in the peripheral circulation. Moreover, the combination with programmed death ligand (PD-L1) blockade demonstrated robust synergistic effects. CONCLUSIONS: RB-312, the first clinically relevant product incorporating a CRISPRa system with non-gene editing and reversible upregulation of endogenous gene expression that promotes CAR-T cells persistence and effectiveness against HER2-expressing tumors. The autocrine effects of reversible, nanoscale IL-12 production limits the risk of off-tumor leakage and systemic toxicity.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Antígeno B7-H1 , Antígenos CD28 , Interleucina-12/genética , Ligandos , Neoplasias/terapia , Sistemas de Liberación de Medicamentos
3.
J Transl Med ; 19(1): 459, 2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34743703

RESUMEN

BACKGROUND: Adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells combined with checkpoint inhibition may prevent T cell exhaustion and improve clinical outcomes. However, the approach is limited by cumulative costs and toxicities. METHODS: To overcome this drawback, we created a CAR-T (RB-340-1) that unites in one product the two modalities: a CRISPR interference-(CRISPRi) circuit prevents programmed cell death protein 1 (PD-1) expression upon antigen-encounter. RB-340-1 is engineered to express an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3ζ co-stimulatory domains linked to the tobacco etch virus (TEV) protease and a single guide RNA (sgRNA) targeting the PD-1 transcription start site (TSS). A second constructs includes linker for activation of T cells (LAT) fused to nuclease-deactivated spCas9 (dCas9)-Kruppel-associated box (KRAB) via a TEV-cleavable sequence (TCS). Upon antigen encounter, the LAT-dCas9-KRAB (LdCK) complex is cleaved by TEV allowing targeting of dCas9-KRAB to the PD-1 gene TSS. RESULTS: Here, we show that RB-340-1 consistently demonstrated higher production of homeostatic cytokines, enhanced expansion of CAR-T cells in vitro, prolonged in vivo persistence and more efficient suppression of HER2+ FaDu oropharyngeal cancer growth compared to the respective conventional CAR-T cell product. CONCLUSIONS: As the first application of CRISPRi toward a clinically relevant product, RB-340-1 with the conditional, non-gene editing and reversible suppression promotes CAR-T cells resilience to checkpoint inhibition, and their persistence and effectiveness against HER2-expressing cancer xenografts.


Asunto(s)
Neoplasias , Anticuerpos de Cadena Única , Antígenos CD28/genética , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva , ARN Guía de Kinetoplastida , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T
4.
Annu Rev Pharmacol Toxicol ; 56: 103-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26738473

RESUMEN

A resurgence in clinical trials using RNA interference (RNAi) occurred in 2012. Although there were initial difficulties in achieving efficacious results with RNAi without toxic side effects, advances in delivery and improved chemistry made this resurgence possible. More than 20 RNAi-based therapeutics are currently in clinical trials, and several of these are Phase III trials. Continued positive results from these trials have helped bolster further attempts to develop clinically relevant RNAi therapies. With a wide variety of disease targets to choose from, the first RNAi therapeutic to be clinically approved is not far off. This review covers recently established and completed clinical trials.


Asunto(s)
Preparaciones Farmacéuticas/administración & dosificación , Interferencia de ARN/fisiología , Ensayos Clínicos como Asunto , Sistemas de Liberación de Medicamentos/métodos , Humanos
5.
Genome Med ; 7(1): 50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26019725

RESUMEN

HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery.

6.
Front Genet ; 3: 234, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23130020

RESUMEN

Aptamers are single-stranded nucleic acids that specifically recognize and bind tightly to their cognate targets due to their stable three-dimensional structure. Nucleic acid aptamers have been developed for various applications, including diagnostics, molecular imaging, biomarker discovery, target validation, therapeutics, and drug delivery. Due to their high specificity and binding affinity, aptamers directly block or interrupt the functions of target proteins making them promising therapeutic agents for the treatment of human maladies. Additionally, aptamers that bind to cell surface proteins are well suited for the targeted delivery of other therapeutics, such as conjugated small interfering RNAs (siRNA) that induce RNA interference (RNAi). Thus, aptamer-siRNA chimeras may offer dual-functions, in which the aptamer inhibits a receptor function, while the siRNA internalizes into the cell to target a specific mRNA. This review focuses on the current progress and therapeutic potential of RNA aptamers, including the use of cell-internalizing aptamers as cell-type specific delivery vehicles for targeted RNAi. In particular, we discuss emerging aptamer-based therapeutics that provide unique clinical opportunities for the treatment various cancers and neurological diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA