Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38569542

RESUMEN

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Humanos , Ratones , Colitis/metabolismo , Colitis/patología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Hibridación Fluorescente in Situ/métodos , Inflamación/metabolismo , Inflamación/patología , Comunicación Celular , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/patología
2.
Cell ; 184(16): 4168-4185.e21, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216539

RESUMEN

Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.


Asunto(s)
Autoinmunidad/inmunología , Modelos Biológicos , Células Th17/inmunología , Acetiltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Aerobiosis/efectos de los fármacos , Algoritmos , Animales , Autoinmunidad/efectos de los fármacos , Cromatina/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Citocinas/metabolismo , Eflornitina/farmacología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Epigenoma , Ácidos Grasos/metabolismo , Glucólisis/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Oxidación-Reducción/efectos de los fármacos , Putrescina/metabolismo , Análisis de la Célula Individual , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos , Transcriptoma/genética
3.
Nat Immunol ; 24(11): 1908-1920, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37828379

RESUMEN

Co-inhibitory and checkpoint molecules suppress T cell function in the tumor microenvironment, thereby rendering T cells dysfunctional. Although immune checkpoint blockade is a successful treatment option for multiple human cancers, severe autoimmune-like adverse effects can limit its application. Here, we show that the gene encoding peptidoglycan recognition protein 1 (PGLYRP1) is highly coexpressed with genes encoding co-inhibitory molecules, indicating that it might be a promising target for cancer immunotherapy. Genetic deletion of Pglyrp1 in mice led to decreased tumor growth and an increased activation/effector phenotype in CD8+ T cells, suggesting an inhibitory function of PGLYRP1 in CD8+ T cells. Surprisingly, genetic deletion of Pglyrp1 protected against the development of experimental autoimmune encephalomyelitis, a model of autoimmune disease in the central nervous system. PGLYRP1-deficient myeloid cells had a defect in antigen presentation and T cell activation, indicating that PGLYRP1 might function as a proinflammatory molecule in myeloid cells during autoimmunity. These results highlight PGLYRP1 as a promising target for immunotherapy that, when targeted, elicits a potent antitumor immune response while protecting against some forms of tissue inflammation and autoimmunity.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Neoplasias , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/metabolismo , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Inmunoterapia , Inflamación , Enfermedades Neuroinflamatorias , Microambiente Tumoral
4.
Nature ; 619(7969): 348-356, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344597

RESUMEN

The role of B cells in anti-tumour immunity is still debated and, accordingly, immunotherapies have focused on targeting T and natural killer cells to inhibit tumour growth1,2. Here, using high-throughput flow cytometry as well as bulk and single-cell RNA-sequencing and B-cell-receptor-sequencing analysis of B cells temporally during B16F10 melanoma growth, we identified a subset of B cells that expands specifically in the draining lymph node over time in tumour-bearing mice. The expanding B cell subset expresses the cell surface molecule T cell immunoglobulin and mucin domain 1 (TIM-1, encoded by Havcr1) and a unique transcriptional signature, including multiple co-inhibitory molecules such as PD-1, TIM-3, TIGIT and LAG-3. Although conditional deletion of these co-inhibitory molecules on B cells had little or no effect on tumour burden, selective deletion of Havcr1 in B cells both substantially inhibited tumour growth and enhanced effector T cell responses. Loss of TIM-1 enhanced the type 1 interferon response in B cells, which augmented B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion of tumour-specific effector T cells. Our results demonstrate that manipulation of TIM-1-expressing B cells enables engagement of the second arm of adaptive immunity to promote anti-tumour immunity and inhibit tumour growth.


Asunto(s)
Linfocitos B , Melanoma , Animales , Ratones , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Activación de Linfocitos , Melanoma/inmunología , Melanoma/patología , Melanoma/prevención & control , Linfocitos T/citología , Linfocitos T/inmunología , Citometría de Flujo , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Presentación de Antígeno , Receptores de Antígenos de Linfocitos B/genética , Análisis de Expresión Génica de una Sola Célula , Carga Tumoral , Interferón Tipo I
5.
J Immunol ; 205(12): 3247-3262, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33168576

RESUMEN

T follicular regulatory (TFR) cells limit Ab responses, but the underlying mechanisms remain largely unknown. In this study, we identify Fgl2 as a soluble TFR cell effector molecule through single-cell gene expression profiling. Highly expressed by TFR cells, Fgl2 directly binds to B cells, especially light-zone germinal center B cells, as well as to T follicular helper (TFH) cells, and directly regulates B cells and TFH in a context-dependent and type 2 Ab isotype-specific manner. In TFH cells, Fgl2 induces the expression of Prdm1 and a panel of checkpoint molecules, including PD1, TIM3, LAG3, and TIGIT, resulting in TFH cell dysfunction. Mice deficient in Fgl2 had dysregulated Ab responses at steady-state and upon immunization. In addition, loss of Fgl2 results in expansion of autoreactive B cells upon immunization. Consistent with this observation, aged Fgl2-/- mice spontaneously developed autoimmunity associated with elevated autoantibodies. Thus, Fgl2 is a TFR cell effector molecule that regulates humoral immunity and limits systemic autoimmunity.


Asunto(s)
Formación de Anticuerpos , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/inmunología , Linfocitos B/inmunología , Fibrinógeno/inmunología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Enfermedades Autoinmunes/genética , Fibrinógeno/genética , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Ratones , Ratones Noqueados , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Linfocitos T Reguladores/inmunología , Proteína del Gen 3 de Activación de Linfocitos
6.
J Immunol ; 200(3): 1027-1038, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29288206

RESUMEN

Emerging data highlight the crucial role of enzymes involved in amino acid metabolism in immune cell biology. IL-4-induced gene-1 (IL4I1), a secreted l-phenylalanine oxidase expressed by APCs, has been detected in B cells, yet its immunoregulatory role has only been explored on T cells. In this study, we show that IL4I1 regulates multiple steps in B cell physiology. Indeed, IL4I1 knockout mice exhibit an accelerated B cell egress from the bone marrow, resulting in the accumulation of peripheral follicular B cells. They also present a higher serum level of natural Igs and self-reactive Abs. We also demonstrate that IL4I1 produced by B cells themselves controls the germinal center reaction, plasma cell differentiation, and specific Ab production in response to T dependent Ags, SRBC, and NP-KLH. In vitro, IL4I1-deficient B cells proliferate more efficiently than their wild-type counterparts in response to BCR cross-linking. Moreover, the absence of IL4I1 increases activation of the Syk-Akt-S6kinase signaling pathway and calcium mobilization, and inhibits SHP-1 activity upon BCR engagement, thus supporting that IL4I1 negatively controls BCR-dependent activation. Overall, our study reveals a new perspective on IL4I1 as a key regulator of B cell biology.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Linfocitos B/citología , Flavoproteínas/genética , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Aminoácido Oxidorreductasas/metabolismo , Animales , Linfocitos B/inmunología , Diferenciación Celular/inmunología , Flavoproteínas/metabolismo , Inmunoglobulinas/sangre , L-Aminoácido Oxidasa , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/fisiología , Quinasa Syk/metabolismo
7.
bioRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38405985

RESUMEN

A central problem in cancer immunotherapy with immune checkpoint blockade (ICB) is the development of resistance, which affects 50% of patients with metastatic melanoma1,2. T cell exhaustion, resulting from chronic antigen exposure in the tumour microenvironment, is a major driver of ICB resistance3. Here, we show that CD38, an ecto-enzyme involved in nicotinamide adenine dinucleotide (NAD+) catabolism, is highly expressed in exhausted CD8+ T cells in melanoma and is associated with ICB resistance. Tumour-derived CD38hiCD8+ T cells are dysfunctional, characterised by impaired proliferative capacity, effector function, and dysregulated mitochondrial bioenergetics. Genetic and pharmacological blockade of CD38 in murine and patient-derived organotypic tumour models (MDOTS/PDOTS) enhanced tumour immunity and overcame ICB resistance. Mechanistically, disrupting CD38 activity in T cells restored cellular NAD+ pools, improved mitochondrial function, increased proliferation, augmented effector function, and restored ICB sensitivity. Taken together, these data demonstrate a role for the CD38-NAD+ axis in promoting T cell exhaustion and ICB resistance, and establish the efficacy of CD38 directed therapeutic strategies to overcome ICB resistance using clinically relevant, patient-derived 3D tumour models.

8.
bioRxiv ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214800

RESUMEN

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used MERFISH to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations; charted their spatial organization; and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.

9.
Cell Res ; 30(4): 285-299, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31974523

RESUMEN

Co-inhibitory receptors are important regulators of T-cell function that define the balance between tolerance and autoimmunity. The immune regulatory function of co-inhibitory receptors, including CTLA-4, PD-1, TIM-3, TIGIT, and LAG-3, was first discovered in the setting of autoimmune disease models, in which their blockade or deficiency resulted in induction or exacerbation of the disease. Later on, co-inhibitory receptors on lymphocytes have also been found to influence outcomes in tumor and chronic viral infection settings. These receptors suppress T-cell function in the tumor microenvironment (TME), thereby making the T cells dysfunctional. Based on this observation, blockade of co-inhibitory receptors (also known as checkpoint molecules) has emerged as a successful treatment option for a number of human cancers. However, severe autoimmune-like side effects limit the use of therapeutics that block individual or combinations of co-inhibitory receptors for cancer treatment. In this review we provide an overview of the role of co-inhibitory receptors in autoimmunity and anti-tumor immunity. We then discuss current approaches and future directions to leverage our knowledge of co-inhibitory receptors to target them in tumor immunity without inducing autoimmunity.


Asunto(s)
Autoinmunidad , Proteínas de Punto de Control Inmunitario/fisiología , Neoplasias/metabolismo , Subgrupos de Linfocitos T , Microambiente Tumoral , Animales , Humanos , Inmunoterapia , Neoplasias/terapia , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/patología
10.
Cell Res ; 30(4): 366, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32086475

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Cell Rep ; 32(2): 107892, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668241

RESUMEN

Tim-1, a phosphatidylserine receptor expressed on B cells, induces interleukin 10 (IL-10) production by sensing apoptotic cells. Here we show that mice with B cell-specific Tim-1 deletion develop tissue inflammation in multiple organs including spontaneous paralysis with inflammation in the central nervous system (CNS). Transcriptomic analysis demonstrates that besides IL-10, Tim-1+ B cells also differentially express a number of co-inhibitory checkpoint receptors including TIGIT. Mice with B cell-specific TIGIT deletion develop spontaneous paralysis with CNS inflammation, but with limited inflammation in other organs. Our findings suggest that Tim-1+ B cells are essential for maintaining self-tolerance and restraining tissue inflammation, and that Tim-1 signaling-dependent TIGIT expression on B cells is essential for maintaining CNS-specific tolerance. A possible critical role of aryl hydrocarbon receptor (AhR) in regulating the B cell function is discussed, as we find that AhR is among the preferentially expressed transcription factors in Tim-1+ B cells and regulates their TIGIT and IL-10 expression.


Asunto(s)
Linfocitos B/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Inflamación/patología , Especificidad de Órganos , Receptores Inmunológicos/metabolismo , Envejecimiento/patología , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Inmunomodulación , Interleucina-10/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Péptidos
12.
Oncoimmunology ; 7(9): e1484979, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30228955

RESUMEN

The high expression of inducible nitric oxide synthase (NOS2) by myeloid-derived suppressor cells (MDSCs) is a key mechanism of immune evasion in cancer. Recently we reported that NOS2 is also expressed by γδ T cells in melanoma, contributing to their polarization towards a pro-tumor phenotype. The molecular mechanisms underlying regulation of NOS2 expression in tumor-induced γδ T cells remain unexplored. By using the model of mice transgenic for the ret oncogene (Ret mice) that develops a spontaneous metastatic melanoma, we evidence that interleukin (IL)-1ß and IL-6 drive NOS2 expression in γδ T cells. Indeed, their in vivo neutralization lessens the γδ T cell capacity to produce not only NOS2, but also IL-17 involved in the recruitment of MDSCs at the primary tumor site. The treatment also delayed tumor cell dissemination and induced vitiligo in a significant proportion of Ret mice. Interestingly, Ret mice developing a less aggressive melanoma, characterized by the spontaneous development of a concomitant autoimmune vitiligo, exhibit a weaker concentration of inflammatory cytokines and a reduction of tumor infiltrating γδ T cells expressing NOS2, when compared to Ret mice without any signs of vitiligo. Overall our results support that the level of inflammation at the tumor site regulates NOS2 expression by γδ T cells and the development of vitiligo associated melanoma.

13.
J Invest Dermatol ; 138(12): 2625-2634, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30048651

RESUMEN

Several studies have emphasized the importance of immune composition of the melanoma microenvironment for clinical outcome. The contribution of IL4I1, a phenylalanine oxidase with immunoregulatory functions, has not been yet explored. Here we studied a primary cutaneous melanoma series from stage I-III patients to investigate the association between in situ IL4I1 expression and clinical parameters or tumor-infiltrating T-cell subsets. IL4I1 was detected in 87% of tumors and was mainly expressed by tumor-associated macrophages and very rare FoxP3+ regulatory T cells. The proportion of IL4I1+ cells was higher in patients with an ulcerated melanoma or with a positive sentinel lymph node and tended to correlate with a rapid relapse and shorter overall survival. This proportion also correlated positively with the presence of regulatory T cells and negatively with the presence of cytotoxic CD8+ T cells. The location of IL4I1+ cells may also be relevant to predict prognosis, because their presence near tumor cells was associated with sentinel lymph node invasion and higher melanoma stage. Collectively, our data show that IL4I1+ cells shape the T-cell compartment and are associated with a higher risk of poor outcome in melanoma, supporting a key role for IL4I1 in immune evasion.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Linfocitos T CD8-positivos/inmunología , L-Aminoácido Oxidasa/metabolismo , Macrófagos/inmunología , Melanoma/metabolismo , Neoplasias Cutáneas/metabolismo , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Citotoxicidad Inmunológica , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Evasión Inmune , Inmunidad Celular , Masculino , Melanoma/diagnóstico , Melanoma/mortalidad , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/mortalidad , Análisis de Supervivencia , Microambiente Tumoral
14.
Oncoimmunology ; 6(3): e1278331, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28405502

RESUMEN

Amino acid catabolizing enzymes emerged as a crucial mechanism used by tumors to dampen immune responses. The L-phenylalanine oxidase IL-4 induced gene 1 (IL4I1) is expressed by tumor-associated myeloid cells of most solid tumors, including melanoma. We previously provided the only evidence that IL4I1 accelerates tumor growth by limiting the CD8+ T cell mediated immune response, in a mouse model of melanoma cell transplantation. Here, we explored the role of IL4I1 in Ret mice, a spontaneous model of melanoma. We found that IL4I1 was expressed by CD11b+ myeloid cells and that its activity correlated with disease aggressiveness. IL4I1 did not enhance tumor cell proliferation or angiogenesis, but orchestrated the remodeling of the immune compartment within the primary tumor. Indeed, the inactivation of IL4I1 limited the recruitment of polymorphonuclear myeloid-derived suppressor cells and enhanced the infiltration by Th1 and cytotoxic T cells, thus delaying tumor development and metastatic dissemination. Accordingly, human primary melanomas that were poorly infiltrated by IL4I1+ cells exhibited a higher density of CD8+ T cells. Collectively, our findings strengthen the rationale for therapeutic targeting of IL4I1 as one of the key immune regulators.

15.
Oncotarget ; 7(47): 77825-77837, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27788481

RESUMEN

In a previous study on a xenograft model of melanoma, we showed that the beta-adrenergic receptor antagonist propranolol inhibits melanoma development by modulating angiogenesis, proliferation and cell survival. Stress hormones can influence tumor development in different ways and norepinephrine was shown to downregulate antitumor immune responses by favoring the accumulation of immunosuppressive cells, impairing the function of lymphocytes. We assessed the effect of propranolol on antitumor immune response in the MT/Ret mouse model of melanoma. Propranolol treatment delayed primary tumor growth and metastases development in MT/Ret mice. Consistent with our previous observations in human melanoma xenografts, propranolol induces a decrease in cell proliferation and vessel density in the primary tumors and in metastases. In this immunocompetent model, propranolol significantly reduced the infiltration of myeloid cells, particularly neutrophils, in the primary tumor. Inversely, cytotoxic tumor infiltrating lymphocytes were more frequent in the tumor stroma of treated mice. In a consistent manner, we observed the same shift in the proportions of infiltrating leukocytes in the metastases of treated mice. Our results suggest that propranolol, by decreasing the infiltration of immunosuppressive myeloid cells in the tumor microenvironment, restores a better control of the tumor by cytotoxic cells.


Asunto(s)
Antineoplásicos/administración & dosificación , Melanoma Experimental/tratamiento farmacológico , Propranolol/administración & dosificación , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Propranolol/farmacología , Proteínas Proto-Oncogénicas c-ret/genética , Neoplasias Cutáneas/inmunología , Resultado del Tratamiento
16.
PLoS One ; 11(11): e0165639, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812136

RESUMEN

γδ T cells play critical roles in host defense against infections and cancer. Although advances have been made in identifying γδ TCR ligands, it remains essential to understand molecular mechanisms responsible for in vivo expansion of γδ T cells in periphery. Recent findings identified the expression of the inducible NO synthase (NOS2) in lymphoid cells and highlighted novel immunoregulatory functions of NOS2 in αß T cell differentiation and B cell survival. In this context, we wondered whether NOS2 exerts an impact on γδ T cell properties. Here, we show that γδ T cells express NOS2 not only in vitro after TCR triggering, but also directly ex vivo. Nos2 deficient mice have fewer γδ T cells in peripheral lymph nodes (pLNs) than their wild-type counterparts, and these cells exhibit a reduced ability to produce IL-2. Using chemical NOS inhibitors and Nos2 deficient γδ T cells, we further evidence that the inactivation of endogenous NOS2 significantly reduced γδ T cell proliferation and glycolysis metabolism that can be restored in presence of exogenous IL-2. Collectively, we demonstrate the crucial role of endogenous NOS2 in promoting optimal IL-2 production, proliferation and glycolysis of γδ T cells that may contribute to their regulation at steady state.


Asunto(s)
Proliferación Celular/genética , Glucólisis/genética , Interleucina-2/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Subgrupos de Linfocitos T/metabolismo , Animales , Proliferación Celular/fisiología , Células Cultivadas , Glucólisis/fisiología , Ganglios Linfáticos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo
17.
Oncoimmunology ; 5(8): e1208878, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27622078

RESUMEN

γδ T lymphocytes may exert either protective or tumor-promoting functions in cancer, mostly based on their polarization toward interferon (IFN)-γ or interleukin (IL)-17 productions, respectively. Here, we demonstrate that γδ T cells accelerate the spontaneous metastatic melanoma development in a model of transgenic mice for the human RET oncogene (Ret mice). We identify unanticipated roles of inducible nitric oxide synthase (NOS2) in favoring the recruitment of pro-tumor γδ T cells within the primary tumor. γδ T cells isolated from Ret mice deficient for NOS2 produced more IFNγ and less IL-17 than their counterparts from Ret mice. By supporting IL-17 production by γδ T cells, NOS2 leads to the recruitment of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and metastasis formation. NOS2 also reduces the cytotoxicity of γδ T cells toward melanoma cells. Finally, we detected NOS2 expressing γδ T cells in the primary tumor and tumor-draining lymph nodes in Ret mice, but also in human melanoma. Overall our results support that this NOS2 autocrine expression is responsible for the polarization of γδ T cells toward a pro-tumor profile.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA