Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Eur Heart J ; 40(10): 842-853, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30496390

RESUMEN

AIMS: Short-QT syndrome 1 (SQT1) is an inherited channelopathy with accelerated repolarization due to gain-of-function in HERG/IKr. Patients develop atrial fibrillation, ventricular tachycardia (VT), and sudden cardiac death with pronounced inter-individual variability in phenotype. We generated and characterized transgenic SQT1 rabbits and investigated electrical remodelling. METHODS AND RESULTS: Transgenic rabbits were generated by oocyte-microinjection of ß-myosin-heavy-chain-promoter-KCNH2/HERG-N588K constructs. Short-QT syndrome 1 and wild type (WT) littermates were subjected to in vivo ECG, electrophysiological studies, magnetic resonance imaging, and ex vivo action potential (AP) measurements. Electrical remodelling was assessed using patch clamp, real-time PCR, and western blot. We generated three SQT1 founders. QT interval was shorter and QT/RR slope was shallower in SQT1 than in WT (QT, 147.8 ± 2 ms vs. 166.4 ± 3, P < 0.0001). Atrial and ventricular refractoriness and AP duration were shortened in SQT1 (vAPD90, 118.6 ± 5 ms vs. 154.4 ± 2, P < 0.0001). Ventricular tachycardia/fibrillation (VT/VF) inducibility was increased in SQT1. Systolic function was unaltered but diastolic relaxation was enhanced in SQT1. IKr-steady was increased with impaired inactivation in SQT1, while IKr-tail was reduced. Quinidine prolonged/normalized QT and action potential duration (APD) in SQT1 rabbits by reducing IKr. Diverse electrical remodelling was observed: in SQT1, IK1 was decreased-partially reversing the phenotype-while a small increase in IKs may partly contribute to an accentuation of the phenotype. CONCLUSION: Short-QT syndrome 1 rabbits mimic the human disease phenotype on all levels with shortened QT/APD and increased VT/VF-inducibility and show similar beneficial responses to quinidine, indicating their value for elucidation of arrhythmogenic mechanisms and identification of novel anti-arrhythmic strategies.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/anomalías , Cardiopatías Congénitas , Ventrículos Cardíacos/fisiopatología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Animales Modificados Genéticamente , Antiarrítmicos/farmacología , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Sistema de Conducción Cardíaco/fisiopatología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Humanos , Masculino , Fenotipo , Quinidina/farmacología , Conejos
2.
Europace ; 21(7): 1126-1138, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30938413

RESUMEN

AIMS: Women with long QT syndrome 2 (LQT2) have a particularly high postpartal risk for lethal arrhythmias. We aimed at investigating whether oxytocin and prolactin contribute to this risk by affecting repolarization. METHODS AND RESULTS: In female transgenic LQT2 rabbits (HERG-G628S, loss of IKr), hormone effects on QT/action potential duration (APD) were assessed (0.2-200 ng/L). Hormone effects (200 ng/L) on ion currents and cellular APD were determined in transfected cells and LQT2 cardiomyocytes. Hormone effects on ion channels were assessed with qPCR and western blot. Experimental data were incorporated into in silico models to determine the pro-arrhythmic potential. Oxytocin prolonged QTc and steepened QT/RR-slope in vivo and prolonged ex vivo APD75 in LQT2 hearts. Prolactin prolonged APD75 at high concentrations. As underlying mechanisms, we identified an oxytocin- and prolactin-induced acute reduction of IKs-tail and IKs-steady (-25.5%, oxytocin; -13.3%, prolactin, P < 0.05) in CHO-cells and LQT2-cardiomyocytes. IKr currents were not altered. This oxytocin-/prolactin-induced IKs reduction caused APD90 prolongation (+11.9%/+13%, P < 0.05) in the context of reduced/absent IKr in LQT2 cardiomyocytes. Hormones had no effect on IK1 and ICa,L in cardiomyocytes. Protein and mRNA levels of CACNA1C/Cav1.2 and RyR2 were enhanced by oxytocin and prolactin. Incorporating these hormone effects into computational models resulted in reduced repolarization reserve and increased propensity to pro-arrhythmic permanent depolarization, lack of capture and early afterdepolarizations formation. CONCLUSIONS: Postpartum hormones oxytocin and prolactin prolong QT/APD in LQT2 by reducing IKs and by increasing Cav1.2 and RyR2 expression/transcription, thereby contributing to the increased postpartal arrhythmic risk in LQT2.


Asunto(s)
Sistema de Conducción Cardíaco/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Oxitocina/metabolismo , Prolactina/metabolismo , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Femenino , Miocitos Cardíacos/efectos de los fármacos , Periodo Posparto , Conejos
3.
Biophys J ; 113(5): 1047-1059, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877488

RESUMEN

Caveolae are signal transduction centers, yet their subcellular distribution and preservation in cardiac myocytes after cell isolation are not well documented. Here, we quantify caveolae located within 100 nm of the outer cell surface membrane in rabbit single-ventricular cardiomyocytes over 8 h post-isolation and relate this to the presence of caveolae in intact tissue. Hearts from New Zealand white rabbits were either chemically fixed by coronary perfusion or enzymatically digested to isolate ventricular myocytes, which were subsequently fixed at 0, 3, and 8 h post-isolation. In live cells, the patch-clamp technique was used to measure whole-cell plasma membrane capacitance, and in fixed cells, caveolae were quantified by transmission electron microscopy. Changes in cell-surface topology were assessed using scanning electron microscopy. In fixed ventricular myocardium, dual-axis electron tomography was used for three-dimensional reconstruction and analysis of caveolae in situ. The presence and distribution of surface-sarcolemmal caveolae in freshly isolated cells matches that of intact myocardium. With time, the number of surface-sarcolemmal caveolae decreases in isolated cardiomyocytes. This is associated with a gradual increase in whole-cell membrane capacitance. Concurrently, there is a significant increase in area, diameter, and circularity of sub-sarcolemmal mitochondria, indicative of swelling. In addition, electron tomography data from intact heart illustrate the regular presence of caveolae not only at the surface sarcolemma, but also on transverse-tubular membranes in ventricular myocardium. Thus, caveolae are dynamic structures, present both at surface-sarcolemmal and transverse-tubular membranes. After cell isolation, the number of surface-sarcolemmal caveolae decreases significantly within a time frame relevant for single-cell research. The concurrent increase in cell capacitance suggests that membrane incorporation of surface-sarcolemmal caveolae underlies this, but internalization and/or micro-vesicle loss to the extracellular space may also contribute. Given that much of the research into cardiac caveolae-dependent signaling utilizes isolated cells, and since caveolae-dependent pathways matter for a wide range of other study targets, analysis of isolated cell data should take the time post-isolation into account.


Asunto(s)
Caveolas , Ventrículos Cardíacos/citología , Miocitos Cardíacos/citología , Animales , Caveolas/fisiología , Separación Celular , Células Cultivadas , Capacidad Eléctrica , Tomografía con Microscopio Electrónico , Imagenología Tridimensional , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mitocondrias/fisiología , Modelos Biológicos , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Conejos , Sarcolema/fisiología , Propiedades de Superficie , Fijación del Tejido
4.
J Cardiovasc Pharmacol ; 68(6): 452-464, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27617699

RESUMEN

AIMS: To obtain functional evidence that ICa,T is involved in the pathogenesis of cardiac hypertrophy and heart failure. We unexpectedly identified ICa(TTX) rather than ICa,T, therefore, we adjusted our aim to encompass these findings. METHODS AND RESULTS: We investigated (1) Cav3.1 (α1G) transgenic (Tg) mice compared with nontransgenic (tTA-Ntg); (2) Cav3.1-deficient mice (Cav3.1) compared with wild type (Wt) after chemically and surgically induced cardiac remodeling; and (3) spontaneous hypertensive rats and thoracic aortic constriction (TAC) rats. Whole-cell patch-clamp technique was used to measure ICa in ventricular myocytes. Cav3.1-Tg expressed ICa,T (-18.35 ± 1.02 pA/pF at -40 mV) without signs of compromised cardiac function. While we failed to detect ICa,T after hypertrophic stimuli, instead we demonstrated that both Wt and Cav3.1 mouse exhibit ICa(TTX). Using TAC rats, only 2 of 24 VMs showed ICa,T under our experimental conditions. Without TTX, ICa(TTX) occurred in VMs from Wt, spontaneous hypertensive rats, and TAC rats also. CONCLUSIONS: These findings demonstrate for the first time that mouse VMs express ICa(TTX). We suggest that future studies should take into consideration the measuring conditions when interpreting ICa,T reappearance in ventricular myocytes in response to hypertrophic stress. Contamination with ICa(TTX) could possibly confuse the relevance of the data.


Asunto(s)
Canales de Calcio Tipo T/deficiencia , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Tetrodotoxina/farmacología , Animales , Canales de Calcio Tipo T/metabolismo , Cardiomegalia/patología , Femenino , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley
6.
Cardiovasc Res ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018021

RESUMEN

AIMS: Short-QT-syndrome type 1 (SQT1) is a genetic channelopathy caused by gain-of-function variants in HERG underlying the rapid delayed-rectifier K+ current (IKr), leading to QT-shortening, ventricular arrhythmias, and sudden cardiac death. Data on efficient pharmaco-therapy for SQT1 are scarce. In patients with primary carnitine-deficiency, acquired-SQTS has been observed and rescued by carnitine-supplementation. Here, we assessed whether carnitine exerts direct beneficial (prolonging) effects on cardiac repolarization in genetic SQTS. METHODS AND RESULTS: Adult wild-type (WT) and transgenic SQT1 rabbits (HERG-N588K, gain of IKr) were used. In vivo ECGs, ex vivo monophasic action potentials (APs) in Langendorff-perfused hearts, and cellular ventricular APs and ion currents were assessed at baseline and during L-Carnitine/C16-Carnitine-perfusion. 2D computer simulations were performed to assess reentry-based VT-inducibility.L-Carnitine/C16-Carnitine prolonged QT intervals in WT and SQT1, leading to QT-normalization in SQT1. Similarly, monophasic and cellular AP duration (APD) was prolonged by L-Carnitine/C16-Carnitine in WT and SQT1. As underlying mechanisms, we identified acute effects on the main repolarizing ion currents: IKr-steady, which is pathologically increased in SQT1, was reduced by L-Carnitine/C16-Carnitine and deactivation kinetics were accelerated. Moreover, L-Carnitine/C16-Carnitine decreased IKs-steady and IK1. In silico modelling identified IKr-changes as main factor for L-Carnitine/C16-Carnitine-induced APD-prolongation. 2D-simulations revealed increased sustained reentry-based arrhythmia formation in SQT1 compared to WT, which was decreased to the WT-level when adding carnitine-induced ion current changes. CONCLUSION: L-Carnitine/C16-Carnitine prolong/normalize QT and whole heart/cellular APD in SQT1 rabbits. These beneficial effects are mediated by acute effects on IKr. L-Carnitine may serve as potential future QT-normalizing, anti-arrhythmic therapy in SQT1.

7.
J Cardiovasc Electrophysiol ; 24(10): 1163-71, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23718892

RESUMEN

BACKGROUND: N588K-KCNH2 and V307L-KCNQ1 mutations lead to a gain-of-function of IKr and IKs thus causing short-QT syndromes (SQT1, SQT2). Combined pharmacotherapies using K(+) -channel-blockers and ß-blockers are effective in SQTS. Since ß-blockers can block IKr and IKs , we aimed at determining carvedilol's and metoprolol's electrophysiological effects on N588K-KCNH2 and V307L-KCNQ1 channels. METHODS: Wild-type (WT)-KCNH2, WT-KCNQ1 and mutant N588K-KCNH2 and V307L-KCNQ1 channels were expressed in CHO-K1 or HEK-293T cells and IKs and IKr were recorded at baseline and during ß-blocker exposure. RESULTS: Carvedilol (10 µM) reduced IKs tail in WT- and V307L-KCNQ1 by 36.5 ± 5% and 18.6 ± 9% (P < 0.05). IC50 values were 16.3 µM (WT) and 46.1 µM (V307L), indicating a 2.8-fold decrease in carvedilol's IKs -blocking potency in V307L-KCNQ1. Carvedilol's (1 µM) inhibition of the IKr tail was attenuated in N588K-KCNH2 (4.5 ± 3% vs 50.3 ± 4%, WT, P < 0.001) with IC50 values of 2.8 µM (WT) and 25.4 µM (N588K). Carvedilol's IKr end-pulse inhibition, however, was increased in N588K-KCNH2 (10 µM, 60.7 ± 6% vs 36.5 ± 5%, WT, P < 0.01). Metoprolol (100 µM) reduced IKr end-pulse by 0.23 ± 3% (WT) and 74.1 ± 7% (N588K, P < 0.05), IKr tail by 32.9 ± 10% (WT) and 68.8 ± 7% (N588K, P < 0.05), and reduced IKs end-pulse by 18.3 ± 5% (WT) and 57.1 ± 11% (V307L, P < 0.05) and IKs tail by 3.3 ± 1% (WT) and 45.1 ± 13 % (V307L, P < 0.05), indicating an increased sensitivity to metoprolol in SQT mutated channels. CONCLUSIONS: N588K-KCNH2 and V307L-KCNQ1 mutations decrease carvedilol's inhibition of the IKs or IKr tail but increase carvedilol's IKr end-pulse inhibition and metoprolol's inhibition of tail and end-pulse currents. These different effects on SQT1 and SQT2 mutated channels should be considered when using ß-blocker therapy in SQTS patients.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Arritmias Cardíacas/metabolismo , Carbazoles/farmacología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Sistema de Conducción Cardíaco/anomalías , Cardiopatías Congénitas/metabolismo , Canal de Potasio KCNQ1/antagonistas & inhibidores , Metoprolol/farmacología , Mutación , Bloqueadores de los Canales de Potasio/farmacología , Propanolaminas/farmacología , Potenciales de Acción , Animales , Arritmias Cardíacas/genética , Células CHO , Carvedilol , Cricetulus , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Sistema de Conducción Cardíaco/metabolismo , Cardiopatías Congénitas/genética , Humanos , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Cinética , Potasio/metabolismo , Transfección
9.
Circ Res ; 107(5): 659-66, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20616315

RESUMEN

RATIONALE: Inositol 1,4,5-trisphosphate (IP(3)) is a second messenger that regulates intracellular Ca(2+) release through IP(3) receptors located in the sarco(endo)plasmic reticulum of cardiac myocytes. Many prohypertrophic G protein-coupled receptor (GPCR) signaling events lead to IP(3) liberation, although its importance in transducing the hypertrophic response has not been established in vivo. OBJECTIVE: Here, we generated conditional, heart-specific transgenic mice with both gain- and loss-of-function for IP(3) receptor signaling to examine its hypertrophic growth effects following pathological and physiological stimulation. METHODS AND RESULTS: Overexpression of the mouse type-2 IP(3) receptor (IP(3)R2) in the heart generated mild baseline cardiac hypertrophy at 3 months of age. Isolated myocytes from overexpressing lines showed increased Ca(2+) transients and arrhythmias in response to endothelin-1 stimulation. Although low levels of IP(3)R2 overexpression failed to augment/synergize cardiac hypertrophy following 2 weeks of pressure-overload stimulation, such levels did enhance hypertrophy following 2 weeks of isoproterenol infusion, in response to Galphaq overexpression, and/or in response to exercise stimulation. To inhibit IP(3) signaling in vivo, we generated transgenic mice expressing an IP(3) chelating protein (IP(3)-sponge). IP(3)-sponge transgenic mice abrogated cardiac hypertrophy in response to isoproterenol and angiotensin II infusion but not pressure-overload stimulation. Mechanistically, IP(3)R2-enhanced cardiac hypertrophy following isoproterenol infusion was significantly reduced in the calcineurin-Abeta-null background. CONCLUSION: These results indicate that IP(3)-mediated Ca(2+) release plays a central role in regulating cardiac hypertrophy downstream of GPCR signaling, in part, through a calcineurin-dependent mechanism.


Asunto(s)
Señalización del Calcio , Cardiomegalia/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Edad , Angiotensina II , Animales , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Calcineurina/deficiencia , Calcineurina/genética , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/prevención & control , Modelos Animales de Enfermedad , Endotelina-1 , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Receptores de Inositol 1,4,5-Trifosfato/genética , Isoproterenol , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/patología , Fenotipo , Esfuerzo Físico
10.
Int J Cardiol Heart Vasc ; 40: 101001, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35391783

RESUMEN

Background: Oxytocin is used therapeutically in psychiatric patients. Many of these also receive anti-depressant or anti-psychotic drugs causing acquired long-QT-syndrome (LQTS) by blocking HERG/IKr. We previously identified an oxytocin-induced QT-prolongation in LQT2 rabbits, indicating potential harmful effects of combined therapy. We thus aimed to analyze the effects of dual therapy with oxytocin and fluoxetine/risperidone on cardiac repolarization. Methods: Effects of risperidone, fluoxetine and oxytocin on QT/QTc, short-term variability (STV) of QT, and APD were assessed in rabbits using in vivo ECG and ex vivo monophasic AP recordings in Langendorff-perfused hearts. Underlying mechanisms were assessed using patch clamp in isolated cardiomyocytes. Results: Oxytocin, fluoxetine and risperidone prolonged QTc and APD in whole hearts. The combination of fluoxetine + oxytocin resulted in further QTc- and APD-prolongation, risperidone + oxytocin tended to increase QTc and APD compared to monotherapy. Temporal QT instability, STVQTc was increased by oxytocin, fluoxetine / fluoxetine + oxytocin and risperidone / risperidone + oxytocin. Similar APD-prolonging effects were confirmed in isolated cardiomyocytes due to differential effects of the compounds on repolarizing ion currents: Oxytocin reduced IKs, fluoxetine and risperidone reduced IKr, resulting in additive effects on IKtotal-tail. In addition, oxytocin reduced IK1, further reducing the repolarization reserve. Conclusion: Oxytocin, risperidone and fluoxetine prolong QTc / APD. Combined treatment further prolongs QTc/APD due to differential effects on IKs and IK1 (block by oxytocin) and IKr (block by risperidone and fluoxetine), leading to pronounced impairment of repolarization reserve. Oxytocin should be used with caution in patients in the context of acquired LQTS.

11.
J Mol Cell Cardiol ; 50(1): 137-46, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21056571

RESUMEN

The AE3 Cl(-)/HCO(3)(-) exchanger is abundantly expressed in the sarcolemma of cardiomyocytes, where it mediates Cl(-)-uptake and HCO(3)(-)-extrusion. Inhibition of AE3-mediated Cl(-)/HCO(3)(-) exchange has been suggested to protect against cardiac hypertrophy; however, other studies indicate that AE3 might be necessary for optimal cardiac function. To test these hypotheses we crossed AE3-null mice, which appear phenotypically normal, with a hypertrophic cardiomyopathy mouse model carrying a Glu180Gly mutation in α-tropomyosin (TM180). Loss of AE3 had no effect on hypertrophy; however, survival of TM180/AE3 double mutants was sharply reduced compared with TM180 single mutants. Analysis of cardiac performance revealed impaired cardiac function in TM180 and TM180/AE3 mutants. TM180/AE3 double mutants were more severely affected and exhibited little response to ß-adrenergic stimulation, a likely consequence of their more rapid progression to heart failure. Increased expression of calmodulin-dependent kinase II and protein phosphatase 1 and differences in methylation and localization of protein phosphatase 2A were observed, but were similar in single and double mutants. Phosphorylation of phospholamban on Ser16 was sharply increased in both single and double mutants relative to wild-type hearts under basal conditions, leading to reduced reserve capacity for ß-adrenergic stimulation of phospholamban phosphorylation. Imaging analysis of isolated myocytes revealed reductions in amplitude and decay of Ca(2+) transients in both mutants, with greater reductions in TM180/AE3 mutants, consistent with the greater severity of their heart failure phenotype. Thus, in the TM180 cardiomyopathy model, loss of AE3 had no apparent anti-hypertrophic effect and led to more rapid decompensation and heart failure.


Asunto(s)
Antiportadores/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatía Hipertrófica/genética , Proteínas de Transporte de Catión , Femenino , Insuficiencia Cardíaca/genética , Immunoblotting , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Miocitos Cardíacos/patología , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno
12.
J Biol Chem ; 285(18): 13748-60, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20194499

RESUMEN

G protein-coupled receptor kinase-2 (GRK2) is a critical regulator of beta-adrenergic receptor (beta-AR) signaling and cardiac function. We studied the effects of mechanical stretch, a potent stimulus for cardiac myocyte hypertrophy, on GRK2 activity and beta-AR signaling. To eliminate neurohormonal influences, neonatal rat ventricular myocytes were subjected to cyclical equi-biaxial stretch. A hypertrophic response was confirmed by "fetal" gene up-regulation. GRK2 activity in cardiac myocytes was increased 4.2-fold at 48 h of stretch versus unstretched controls. Adenylyl cyclase activity was blunted in sarcolemmal membranes after stretch, demonstrating beta-AR desensitization. The hypertrophic response to mechanical stretch is mediated primarily through the G alpha(q)-coupled angiotensin II AT(1) receptor leading to activation of protein kinase C (PKC). PKC is known to phosphorylate GRK2 at the N-terminal serine 29 residue, leading to kinase activation. Overexpression of a mini-gene that inhibits receptor-G alpha(q) coupling blunted stretch-induced hypertrophy and GRK2 activation. Short hairpin RNA-mediated knockdown of PKC alpha also significantly attenuated stretch-induced GRK2 activation. Overexpression of a GRK2 mutant (S29A) in cardiac myocytes inhibited phosphorylation of GRK2 by PKC, abolished stretch-induced GRK2 activation, and restored adenylyl cyclase activity. Cardiac-specific activation of PKC alpha in transgenic mice led to impaired beta-agonist-stimulated ventricular function, blunted cyclase activity, and increased GRK2 phosphorylation and activity. Phosphorylation of GRK2 by PKC appears to be the primary mechanism of increased GRK2 activity and impaired beta-AR signaling after mechanical stretch. Cross-talk between hypertrophic signaling at the level of PKC and beta-AR signaling regulated by GRK2 may be an important mechanism in the transition from compensatory ventricular hypertrophy to heart failure.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Miocitos Cardíacos/enzimología , Transducción de Señal , Estrés Fisiológico , Animales , Células Cultivadas , Activación Enzimática/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Técnicas de Silenciamiento del Gen , Ventrículos Cardíacos/enzimología , Ratones , Ratones Noqueados , Fosforilación/genética , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Ratas , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Factores de Tiempo
13.
Circulation ; 121(3): 410-8, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20065163

RESUMEN

BACKGROUND: Tropomyosin (TM), an essential actin-binding protein, is central to the control of calcium-regulated striated muscle contraction. Although TPM1alpha (also called alpha-TM) is the predominant TM isoform in human hearts, the precise TM isoform composition remains unclear. METHODS AND RESULTS: In this study, we quantified for the first time the levels of striated muscle TM isoforms in human heart, including a novel isoform called TPM1kappa. By developing a TPM1kappa-specific antibody, we found that the TPM1kappa protein is expressed and incorporated into organized myofibrils in hearts and that its level is increased in human dilated cardiomyopathy and heart failure. To investigate the role of TPM1kappa in sarcomeric function, we generated transgenic mice overexpressing cardiac-specific TPM1kappa. Incorporation of increased levels of TPM1kappa protein in myofilaments leads to dilated cardiomyopathy. Physiological alterations include decreased fractional shortening, systolic and diastolic dysfunction, and decreased myofilament calcium sensitivity with no change in maximum developed tension. Additional biophysical studies demonstrate less structural stability and weaker actin-binding affinity of TPM1kappa compared with TPM1alpha. CONCLUSIONS: This functional analysis of TPM1kappa provides a possible mechanism for the consequences of the TM isoform switch observed in dilated cardiomyopathy and heart failure patients.


Asunto(s)
Cardiomiopatía Dilatada/fisiopatología , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Tropomiosina/química , Tropomiosina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adulto , Animales , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Dimerización , Femenino , Expresión Génica/fisiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Homeostasis/fisiología , Humanos , Isomerismo , Masculino , Ratones , Ratones Transgénicos , Miofibrillas/metabolismo , Isoformas de Proteínas , Temperatura , Tropomiosina/metabolismo
14.
Nat Med ; 10(3): 248-54, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14966518

RESUMEN

The protein kinase C (PKC) family of serine/threonine kinases functions downstream of nearly all membrane-associated signal transduction pathways. Here we identify PKC-alpha as a fundamental regulator of cardiac contractility and Ca(2+) handling in myocytes. Hearts of Prkca-deficient mice are hypercontractile, whereas those of transgenic mice overexpressing Prkca are hypocontractile. Adenoviral gene transfer of dominant-negative or wild-type PKC-alpha into cardiac myocytes enhances or reduces contractility, respectively. Mechanistically, modulation of PKC-alpha activity affects dephosphorylation of the sarcoplasmic reticulum Ca(2+) ATPase-2 (SERCA-2) pump inhibitory protein phospholamban (PLB), and alters sarcoplasmic reticulum Ca(2+) loading and the Ca(2+) transient. PKC-alpha directly phosphorylates protein phosphatase inhibitor-1 (I-1), altering the activity of protein phosphatase-1 (PP-1), which may account for the effects of PKC-alpha on PLB phosphorylation. Hypercontractility caused by Prkca deletion protects against heart failure induced by pressure overload, and against dilated cardiomyopathy induced by deleting the gene encoding muscle LIM protein (Csrp3). Deletion of Prkca also rescues cardiomyopathy associated with overexpression of PP-1. Thus, PKC-alpha functions as a nodal integrator of cardiac contractility by sensing intracellular Ca(2+) and signal transduction events, which can profoundly affect propensity toward heart failure.


Asunto(s)
Gasto Cardíaco Bajo/fisiopatología , Isoenzimas/metabolismo , Contracción Miocárdica/fisiología , Proteína Quinasa C/metabolismo , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Calsecuestrina/metabolismo , Cardiomiopatías/metabolismo , Isoenzimas/genética , Ratones , Ratones Transgénicos , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C-alfa , Proteína Fosfatasa 1 , Ratas , Factores de Riesgo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico
15.
Am J Physiol Heart Circ Physiol ; 297(1): H117-24, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19429829

RESUMEN

Cardiac L-type voltage-dependent Ca(2+) channels are heteromultimeric polypeptide complexes of alpha(1)-, alpha(2)/delta-, and beta-subunits. The alpha(2)/delta-1-subunit possesses a stereoselective, high-affinity binding site for gabapentin, widely used to treat epilepsy and postherpetic neuralgic pain as well as sleep disorders. Mutations in alpha(2)/delta-subunits of voltage-dependent Ca(2+) channels have been associated with different diseases, including epilepsy. Multiple heterologous coexpression systems have been used to study the effects of the deletion of the alpha(2)/delta-1-subunit, but attempts at a conventional knockout animal model have been ineffective. We report the development of a viable conventional knockout mouse using a construct targeting exon 2 of alpha(2)/delta-1. While the deletion of the subunit is not lethal, these animals lack high-affinity gabapentin binding sites and demonstrate a significantly decreased basal myocardial contractility and relaxation and a decreased L-type Ca(2+) current peak current amplitude. This is a novel model for studying the function of the alpha(2)/delta-1-subunit and will be of importance in the development of new pharmacological therapies.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Canales de Calcio/fisiología , Aminas/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Western Blotting , Canales de Calcio/efectos de los fármacos , Canales de Calcio/genética , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/genética , Ácidos Ciclohexanocarboxílicos/metabolismo , Electrofisiología , Exones/genética , Gabapentina , Genotipo , Corazón/efectos de los fármacos , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/genética , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido gamma-Aminobutírico/metabolismo
16.
J Clin Invest ; 115(12): 3306-17, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16322774

RESUMEN

Sydney Ringer would be overwhelmed today by the implications of his simple experiment performed over 120 years ago showing that the heart would not beat in the absence of Ca2+. Fascination with the role of Ca2+ has proliferated into all aspects of our understanding of normal cardiac function and the progression of heart disease, including induction of cardiac hypertrophy, heart failure, and sudden death. This review examines the role of Ca2+ and the L-type voltage-dependent Ca2+ channels in cardiac disease.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Secuencias de Aminoácidos , Animales , Fibrilación Atrial , Calcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Modelos Biológicos , Miocitos Cardíacos/citología , Isoformas de Proteínas , Estructura Terciaria de Proteína , Distribución Tisular
17.
FASEB J ; 20(10): 1660-70, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16873889

RESUMEN

The manner in which Ca2+-sensitive signaling proteins are activated in contracting cardiomyocytes is an intriguing theoretical problem given that the cytoplasm is continually bathed with systolic Ca2+ concentrations that should maximally activate most Ca2+-sensitive signaling kinases and phosphatases. Store-operated Ca2+ entry, partially attributed to transient receptor potential (TRP) proteins, can mediate activation of the Ca2+-sensitive phosphatase calcineurin in nonexcitable cells. Here we investigated the gain-of-function phenotype associated with TRPC3 expression in the mouse heart using transgenesis to examine the potential role of store-operated Ca2+ entry in regulating cardiac calcineurin activation and ensuing hypertrophy/myopathy. Adult myocytes isolated from TRPC3 transgenic mice showed abundant store-operated Ca2+ entry that was inhibited with SKF96365 but not verapamil or KB-R7943. Associated with this induction in store-operated Ca2+ entry, TRPC3 transgenic mice showed increased calcineurin-nuclear factor of activated T cells (NFAT) activation in vivo, cardiomyopathy, and increased hypertrophy after neuroendocrine agonist or pressure overload stimulation. The cardiomyopathic phenotype and increased hypertrophy after pressure overload stimulation were blocked by targeted disruption of the calcineurin Abeta gene. Thus, enhanced store-operated Ca2+ entry in the heart can regulate calcineurin-NFAT signaling in vivo, which could secondarily impact the hypertrophic response and cardiomyopathy.


Asunto(s)
Calcineurina/fisiología , Cardiomiopatías/etiología , Miocardio/metabolismo , Canales Catiónicos TRPC/fisiología , Animales , Calcio/metabolismo , Cardiomegalia/etiología , Células Cultivadas , Ratones , Ratones Transgénicos , Miocardio/citología , Factores de Transcripción NFATC/metabolismo , Transducción de Señal
18.
Circ Res ; 96(7): 756-66, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15746443

RESUMEN

Abnormal calcium cycling, characteristic of experimental and human heart failure, is associated with impaired sarcoplasmic reticulum calcium uptake activity. This reflects decreases in the cAMP-pathway signaling and increases in type 1 phosphatase activity. The increased protein phosphatase 1 activity is partially due to dephosphorylation and inactivation of its inhibitor-1, promoting dephosphorylation of phospholamban and inhibition of the sarcoplasmic reticulum calcium-pump. Indeed, cardiac-specific expression of a constitutively active inhibitor-1 results in selective enhancement of phospholamban phosphorylation and augmented cardiac contractility at the cellular and intact animal levels. Furthermore, the beta-adrenergic response is enhanced in the transgenic hearts compared with wild types. On aortic constriction, the hypercontractile cardiac function is maintained, hypertrophy is attenuated and there is no decompensation in the transgenics compared with wild-type controls. Notably, acute adenoviral gene delivery of the active inhibitor-1, completely restores function and partially reverses remodeling, including normalization of the hyperactivated p38, in the setting of pre-existing heart failure. Thus, the inhibitor 1 of the type 1 phosphatase may represent an attractive new therapeutic target.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Insuficiencia Cardíaca/prevención & control , Contracción Miocárdica , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Proteínas/fisiología , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , ATPasas Transportadoras de Calcio/fisiología , Cardiomegalia/etiología , Cardiomegalia/prevención & control , Terapia Genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Ratones , Ratones Transgénicos , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/fisiología , Fosforilación , Proteína Fosfatasa 1 , Proteínas/genética , Ratas , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Remodelación Ventricular
19.
Prog Biophys Mol Biol ; 130(Pt B): 344-355, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655649

RESUMEN

BACKGROUND: Increased electrical heterogeneity has been causatively linked to arrhythmic disorders, yet the knowledge about physiological heterogeneity remains incomplete. This study investigates regional electro-mechanical heterogeneities in rabbits, one of the key animal models for arrhythmic disorders. METHODS AND FINDINGS: 7 wild-type rabbits were examined by phase-contrast magnetic resonance imaging in vivo to assess cardiac wall movement velocities. Using a novel data-processing algorithm regional contraction-like profiles were calculated. Contraction started earlier and was longer in left ventricular (LV) apex than base. Patch clamp recordings showed longer action potentials (AP) in LV apex compared to the base of LV, septum, and right ventricle. Western blots of cardiac ion channels and calcium handling proteins showed lower expression of Cav1.2, KvLQT1, Kv1.4, NCX and Phospholamban in LV apex vs. base. A single-cell in silico model integrating the quantitative regional differences in ion channels reproduced a longer contraction and longer AP in apex vs. base. CONCLUSIONS: Apico-basal electro-mechanical heterogeneity is physiologically present in the healthy rabbit heart. An apico-basal electro-mechanical gradient exists with longer APD and contraction duration in the apex and associated regionally heterogeneous expression of five key proteins. This pattern of apical mechanical dominance probably serves to increase pumping efficiency.


Asunto(s)
Fenómenos Electrofisiológicos , Corazón/fisiología , Fenómenos Mecánicos , Animales , Fenómenos Biomecánicos , Simulación por Computador , Modelos Biológicos , Miocardio/metabolismo , Conejos
20.
Circ Res ; 93(11): 1111-9, 2003 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-14605019

RESUMEN

The protein kinase C (PKC) family is implicated in cardiac hypertrophy, contractile failure, and beta-adrenergic receptor (betaAR) dysfunction. Herein, we describe the effects of gain- and loss-of-PKCalpha function using transgenic expression of conventional PKC isoform translocation modifiers. In contrast to previously studied PKC isoforms, activation of PKCalpha failed to induce cardiac hypertrophy, but instead caused betaAR insensitivity and ventricular dysfunction. PKCalpha inhibition had opposite effects. Because PKCalpha is upregulated in human and experimental cardiac hypertrophy and failure, its effects were also assessed in the context of the Galphaq overexpression model (in which PKCalpha is transcriptionally upregulated). Normalization (inhibition) of PKCalpha activity in Galpha(q) hearts improved systolic and diastolic function, whereas further activation of PKCalpha caused a lethal restrictive cardiomyopathy with marked interstitial fibrosis. These results define pathological roles for PKCalpha as a negative regulator of ventricular systolic and diastolic function.


Asunto(s)
Cardiomegalia/fisiopatología , Proteína Quinasa C/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Cardiomegalia/enzimología , Cardiomegalia/genética , Cardiomiopatías/enzimología , Cardiomiopatías/patología , Separación Celular , Diástole , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Inhibidores Enzimáticos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Ratones , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Péptidos/genética , Péptidos/metabolismo , Péptidos/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Proteína Quinasa C-alfa , Transporte de Proteínas/genética , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal/fisiología , Sístole , Disfunción Ventricular/tratamiento farmacológico , Disfunción Ventricular/enzimología , Disfunción Ventricular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA