Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(31): 9536-41, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26183228

RESUMEN

Saturn's rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, ~r(-q) with q ≈ 3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75 ≤ q ≤ 3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being set by the relative frequency of aggregating and disruptive collisions. This cutoff is much smaller than the typical scale of microstructures seen in Saturn's rings.

2.
Phys Chem Chem Phys ; 17(34): 21791-8, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26252559

RESUMEN

Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient ε. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of ε on the impact velocity of particles.

3.
Phys Rev E ; 109(2-1): 024903, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491577

RESUMEN

We investigate diffusion in polydisperse granular media. We derive the mean-squared displacement of granular particles in a polydisperse granular gas in a homogeneous cooling state, containing an arbitrary amount of species of different sizes and masses. We investigate both models of constant and time-dependent restitution coefficients and obtain a universal law for the size dependence of the mean-squared displacement for steep size distributions.

4.
Phys Rev Lett ; 111(26): 260601, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24483787

RESUMEN

Recent molecular dynamics simulations of glass-forming liquids revealed superdiffusive fluctuations associated with the position of a tracer particle (TP) driven by an external force. Such an anomalous response, whose mechanism remains elusive, has been observed up to now only in systems close to their glass transition, suggesting that this could be one of its hallmarks. Here, we show that the presence of superdiffusion is in actual fact much more general, provided that the system is crowded and geometrically confined. We present and solve analytically a minimal model consisting of a driven TP in a dense, crowded medium in which the motion of particles is mediated by the diffusion of packing defects, called vacancies. For such nonglass-forming systems, our analysis predicts a long-lived superdiffusion which ultimately crosses over to giant diffusive behavior. We find that this trait is present in confined geometries, for example long capillaries and stripes, and emerges as a universal response of crowded environments to an external force. These findings are confirmed by numerical simulations of systems as varied as lattice gases, dense liquids, and granular fluids.

5.
Phys Rev Lett ; 109(17): 178001, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23215224

RESUMEN

Brownian motion in a granular gas in a homogeneous cooling state is studied theoretically and by means of molecular dynamics. We use the simplest first-principles model for the impact-velocity dependent restitution coefficient, as it follows for the model of viscoelastic spheres. We reveal that for a wide range of initial conditions the ratio of granular temperatures of Brownian and bath particles demonstrates complicated nonmonotonic behavior, which results in a transition between different regimes of Brownian dynamics: It starts from the ballistic motion, switches later to a superballistic one, and turns at still later times into subdiffusion; eventually normal diffusion is achieved. Our theory agrees very well with the molecular dynamics results, although extreme computational costs prevented us from detecting the final diffusion regime. Qualitatively, the reported intermediate diffusion regimes are generic for granular gases with any realistic dependence of the restitution coefficient on the impact velocity.

6.
Phys Rev Lett ; 105(23): 238001, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21231505

RESUMEN

The oblique impacts of nanoclusters are studied theoretically and by means of molecular dynamics. In simulations we explore two models--Lennard-Jones clusters and particles with covalently bonded atoms. In contrast with the case of macroscopic bodies, the standard definition of the normal restitution coefficient yields for this coefficient negative values for oblique collisions of nanoclusters. We explain this effect and propose a proper definition of the restitution coefficient which is always positive. We develop a theory of an oblique impact based on a continuum model of particles. A surprisingly good agreement between the macroscopic theory and simulations leads to the conclusion that macroscopic concepts of elasticity, bulk viscosity, and surface tension remain valid for nanoparticles of a few hundred atoms.

7.
Phys Rev E ; 102(3-1): 032129, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33076031

RESUMEN

We consider Brownian motion under resetting in higher dimensions for the case when the return of the particle to the origin occurs at a constant speed. We investigate the behavior of the probability density function (PDF) and of the mean-squared displacement (MSD) in this process. We study two different resetting protocols: exponentially distributed time intervals between the resetting events (Poissonian resetting) and resetting at fixed time intervals (deterministic resetting). We moreover discuss a general problem of the invariance of the PDF with respect to the return speed, as observed in the one-dimensional system for Poissonian resetting, and show that this one-dimensional situation is the only one in which such an invariance can be found. However, the invariance of the MSD can still be observed in higher dimensions.

8.
Phys Rev E ; 101(6-1): 062117, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688585

RESUMEN

We study continuous-time random walks (CTRW) with power-law distribution of waiting times under resetting which brings the walker back to the origin, with a power-law distribution of times between the resetting events. Two situations are considered. Under complete resetting, the CTRW after the resetting event starts anew, with a new waiting time, independent of the prehistory. Under incomplete resetting, the resetting of the coordinate does not influence the waiting time until the next jump. We focus on the behavior of the mean-squared displacement (MSD) of the walker from its initial position, on the conditions under which the probability density functions of the walker's displacement show universal behavior, and on this universal behavior itself. We show, that the behavior of the MSD is the same as in the scaled Brownian motion (SBM), being the mean-field model of the CTRW. The intermediate asymptotics of the probability density functions (PDF) for CTRW under complete resetting (provided they exist) are also the same as in the corresponding case for SBM. For incomplete resetting, however, the behavior of the PDF for CTRW and SBM is vastly different.

9.
Phys Rev E ; 101(2-1): 022903, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32168713

RESUMEN

We investigate numerically and analytically size-polydisperse granular mixtures immersed into a molecular gas. We show that the equipartition of granular temperatures of particles of different sizes is established; however, the granular temperatures significantly differ from the temperature of the molecular gas. This result is surprising since, generally, the energy equipartition is strongly violated in driven granular mixtures. Qualitatively, the obtained results do not depend on the collision model, being valid for a constant restitution coefficient ɛ, as well as for the ɛ for viscoelastic particles. Our findings may be important for astrophysical applications, such as protoplanetary disks, interstellar dust clouds, and comets.

10.
Phys Rev E ; 101(5-1): 052130, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575253

RESUMEN

We consider a random two-phase process which we call a reset-return one. The particle starts its motion at the origin. The first, displacement, phase corresponds to a stochastic motion of a particle and is finished at a resetting event. The second, return, phase corresponds to the particle's motion toward the origin from the position it attained at the end of the displacement phase. This motion toward the origin takes place according to a given equation of motion. The whole process is a renewal one. We provide general expressions for the stationary probability density function of the particle's position and for the mean hitting time in one dimension. We perform explicit analysis for the Brownian motion during the displacement phase and three different types of the return motion: return at a constant speed, return at a constant acceleration with zero initial speed, and return under the action of a harmonic force. We assume that the waiting times for resetting events follow an exponential distribution or that resetting takes place after a fixed waiting period. For the first two types of return motion and the exponential resetting, the stationary probability density function of the particle's position is invariant under return speed (acceleration), while no such invariance is found for deterministic resetting, and for exponential resetting with return under the action of the harmonic force. We discuss necessary conditions for such invariance of the stationary PDF of the positions with respect to the properties of the return process, and we demonstrate some additional examples when this invariance does or does not take place.

11.
Sci Rep ; 10(1): 693, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959873

RESUMEN

We study analytically and numerically the distribution of granular temperatures in granular mixtures for different dissipation mechanisms of inelastic inter-particle collisions. Both driven and force-free systems are analyzed. We demonstrate that the simplified model of a constant restitution coefficient fails to predict even qualitatively a granular temperature distribution in a homogeneous cooling state. At the same time we reveal for driven systems a stunning result - the distribution of temperatures in granular mixtures is universal. That is, it does not depend on a particular dissipation mechanism of inter-particles collisions, provided the size distributions of particles is steep enough. The results of the analytic theory are compared with simulation results obtained by the direct simulation Monte Carlo (DSMC). The agreement between the theory and simulations is perfect. The reported results may have important consequences for fundamental science as well as for numerous application, e.g. for the experimental modelling in a lab of natural processes.

12.
Phys Rev E ; 100(1-1): 012120, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31499761

RESUMEN

We investigate an intermittent stochastic process in which the diffusive motion with time-dependent diffusion coefficient D(t)∼t^{α-1} with α>0 (scaled Brownian motion) is stochastically reset to its initial position, and starts anew. In the present work we discuss the situation in which the memory on the value of the diffusion coefficient at a resetting time is erased, so that the whole process is a fully renewal one. The situation when the resetting of the coordinate does not affect the diffusion coefficient's time dependence is considered in the other work of this series [A. S. Bodrova et al., Phys. Rev. E 100, 012119 (2019)10.1103/PhysRevE.100.012119]. We show that the properties of the probability densities in such processes (erasing or retaining the memory on the diffusion coefficient) are vastly different. In addition we discuss the first-passage properties of the scaled Brownian motion with renewal resetting and consider the dependence of the efficiency of search on the parameters of the process.

13.
Phys Rev E ; 100(1-1): 012119, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31499839

RESUMEN

We investigate an intermittent stochastic process in which diffusive motion with a time-dependent diffusion coefficient, D(t)∼t^{α-1}, α>0 (scaled Brownian motion), is stochastically reset to its initial position and starts anew. The resetting follows a renewal process with either an exponential or a power-law distribution of the waiting times between successive renewals. The resetting events, however, do not affect the time dependence of the diffusion coefficient, so that the whole process appears to be a nonrenewal one. We discuss the mean squared displacement of a particle and the probability density function of its positions in this process. We show that scaled Brownian motion with resetting demonstrates rich behavior whose properties essentially depend on the interplay of the parameters of the resetting process and the particle's displacement infree motion. The motion of particles can remain almost unaffected by resetting but can also get slowed down or even be completely suppressed. Especially interesting are the nonstationary situations in which the mean squared displacement stagnates but the distribution of positions does not tend to any steady state. This behavior is compared to the situation [discussed in the companion paper; A. S. Bodrova et al., Phys. Rev. E 100, 012120 (2019)10.1103/PhysRevE.100.012120] in which the memory of the value of the diffusion coefficient at a resetting time is erased, so that the whole process is a fully renewal one. We show that the properties of the probability densities in such processes (erasing or retaining the memory on the diffusion coefficient) are vastly different.

14.
Phys Rev E ; 95(1-1): 012120, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28208482

RESUMEN

We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble- and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.

15.
Sci Rep ; 6: 30520, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27462008

RESUMEN

It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.

16.
Artículo en Inglés | MEDLINE | ID: mdl-23848666

RESUMEN

We perform large-scale event-driven molecular dynamics (MD) simulations for granular gases of particles interacting with the impact-velocity-dependent restitution coefficient ε(v(imp)). We use ε(v(imp)) as it follows from the simplest first-principles collision model of viscoelastic spheres. Both cases of force-free and uniformly heated gases are studied. We formulate a simplified model of an effective constant restitution coefficient ε(eff), which depends on a current granular temperature, and we compute ε(eff) using the kinetic theory. We develop a theory of the velocity distribution function for driven gases of viscoelastic particles and analyze the evolution of granular temperature and of the Sonine coefficients, which characterize the form of the velocity distribution function. We observe that for not large dissipation the simulation results are in an excellent agreement with the theory for both the homogeneous cooling state and uniformly heated gases. At the same time, a noticeable discrepancy between the theory and MD results for the Sonine coefficients is detected for large dissipation. We analyze the accuracy of the simplified model based on the effective restitution coefficient ε(eff), and we conclude that this model can accurately describe granular temperature. It provides also an acceptable accuracy for the velocity distribution function for small dissipation, but it fails when dissipation is large.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA