Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 605(7910): 483-489, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35585346

RESUMEN

New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN)1-4. However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region5,6. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles-comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO3-H2SO4-NH3 nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere.

2.
Environ Sci Technol ; 57(6): 2297-2309, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36716278

RESUMEN

The mechanistic pathway by which high relative humidity (RH) affects gas-particle partitioning remains poorly understood, although many studies report increased secondary organic aerosol (SOA) yields at high RH. Here, we use real-time, molecular measurements of both the gas and particle phase to provide a mechanistic understanding of the effect of RH on the partitioning of biogenic oxidized organic molecules (from α-pinene and isoprene) at low temperatures (243 and 263 K) at the CLOUD chamber at CERN. We observe increases in SOA mass of 45 and 85% with increasing RH from 10-20 to 60-80% at 243 and 263 K, respectively, and attribute it to the increased partitioning of semi-volatile compounds. At 263 K, we measure an increase of a factor 2-4 in the concentration of C10H16O2-3, while the particle-phase concentrations of low-volatility species, such as C10H16O6-8, remain almost constant. This results in a substantial shift in the chemical composition and volatility distribution toward less oxygenated and more volatile species at higher RH (e.g., at 263 K, O/C ratio = 0.55 and 0.40, at RH = 10 and 80%, respectively). By modeling particle growth using an aerosol growth model, which accounts for kinetic limitations, we can explain the enhancement in the semi-volatile fraction through the complementary effect of decreased compound activity and increased bulk-phase diffusivity. Our results highlight the importance of particle water content as a diluting agent and a plasticizer for organic aerosol growth.


Asunto(s)
Contaminantes Atmosféricos , Monoterpenos , Monoterpenos/química , Humedad , Aerosoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA