Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39033020

RESUMEN

BACKGROUND: Visualisation of the dorsolateral subthalamic nucleus (STN) remains challenging on 1.5 and 3Tesla T2-weighted MRI. Our previously defined hotspot, relative to the well-visualised medial STN border, serves as an MRI landmark for dorsolateral STN identification in deep brain stimulation (DBS). We aimed to validate this hotspot in a separate trial cohort of Parkinson's disease (PD) patients and refine its location. METHODS: In this post hoc analysis of a randomised controlled trial, in which the hotspot was taken into account during target planning, responses to DBS were evaluated using hemibody improvement on the Movement Disorder Society-Unified Parkinson's Disease Rating Scale motor examination and compared with our historical cohort, as well as dopaminergic medication reduction. Then, a refined hotspot was calculated and the Euclidean distance from individual active contacts to the refined hotspot was correlated with motor improvement. RESULTS: The first quartile of the hemibodies (poor responders) showed an average improvement of 13%, which was higher than the -8% in the historical control group (p=0.044). Dopaminergic medication reduction was greater in the current cohort compared with the historical cohort (p=0.020). Overall variability of hemibody motor improvement was reduced in the current cohort compared with the historical control group (p=0.003). Motor improvement correlated to the Euclidean distance from active contact to the refined hotspot (2.8 mm lateral, 1.1 mm anterior and 2.2 mm superior to the medial STN border) (p=0.001). CONCLUSION: We validated the hotspot for dorsolateral STN targeting in DBS for patients with PD and showed an improved motor response in poor responders, a reduced variability in motor improvement and a greater dopaminergic medication reduction. We then refined the hotspot at 2.8 mm lateral, 1.1 mm anterior and 2.2 mm superior relative to the medial STN border, which visualises a readily implementable target within the dorsolateral STN on lower field strength MRI.

2.
Stereotact Funct Neurosurg ; 99(3): 187-195, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33207350

RESUMEN

INTRODUCTION: The intersection of Bejjani's line with the well-delineated medial subthalamic nucleus (STN) border on MRI has recently been proposed as an individualized reference in subthalamic deep brain stimulation (DBS) surgery for Parkinson's disease (PD). We, therefore, aimed to investigate the applicability across centers of the medial STN border as a patient-specific reference point in STN DBS for PD and explore anatomical variability between left and right mesencephalic area within patients. Furthermore, we aim to evaluate a recently defined theoretic stimulation "hotspot" in a different center. METHODS: Preoperative 3-Tesla T2 and susceptibility-weighted images (SWI) were used to identify the intersection of Bejjani's line with the medial STN border in left and right mesencephalic area. The average stereotactic coordinates of the center of stimulation relative to the medial STN border were compared with the predefined theoretic stimulation "hotspot." RESULTS: Fifty-four patients provided 108 stereotactic coordinates of medial STN borders on both sequences. Significant difference in means was found in the Y-(anteroposterior) and Z-(dorsoventral) directions (T2 vs. SWI; p < 0.001). Mean coordinates in the Y-(anteroposterior) direction differed significantly between left and right mesencephalic area (T2: p < 0.001; SWI: p = 0.021). Sixty-six DBS leads were placed in 36 patients that had finished stimulation programming, and the average stereotactic coordinates of the center of stimulation relative to the medial STN border on T2 sequences were 3.1 mm lateral, 0.7 mm anterior, and 1.8 mm superior, in proximity of the predefined theoretic stimulation "hotspot." CONCLUSION: The medial STN border is applicable across centers as a reference point for STN DBS surgery for PD and seems suitable in order to account for interindividual and intraindividual anatomical variability if one is aware of the discrepancies between T2-weighted imaging and SWI.


Asunto(s)
Estimulación Encefálica Profunda , Neurocirugia , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/cirugía , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/cirugía
3.
World Neurosurg ; 139: e784-e791, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371080

RESUMEN

OBJECTIVE: We sought to determine the location of kinesthetic cell clusters within the subthalamic nucleus (STN) on magnetic resonance imaging, adjusted for interindividual anatomic variability by employing the medial STN border as a reference point. METHODS: We retrospectively localized microelectrode recording-defined kinesthetic cells on 3-Tesla T2-weighted and susceptibility-weighted images in patients who underwent STN deep brain stimulation for Parkinson disease and averaged the stereotactic coordinates. These locations were calculated relative to the nonindividualized midcommissural point (MCP) and, in order to account for interindividual anatomic variability, also calculated relative to the patient-specific intersection of Bejjani line with the medial STN border. Two example patients were selected in order to visualize the discrepancies between the adjusted and nonadjusted theoretic kinesthetic cell clusters on magnetic resonance imaging. RESULTS: Relative to the MCP, average kinesthetic cell coordinates were 12.3 ± 1.2 mm lateral, 1.7 ± 1.4 mm posterior, and 2.3 ± 1.5 mm inferior. Relative to the medial STN border, mean coordinates were 3.4 ± 1.0 mm lateral, 1.0 ± 1.4 mm anterior, and 1.7 ± 1.5 mm superior on T2-sequences, and on susceptibility-weighted images mean coordinates were 3.2 ± 1.1 mm lateral, 0.8 ± 1.5 mm anterior, and 2.1 ± 1.5 mm superior. The theoretic kinesthetic cell clusters may appear outside the sensorimotor STN when using the MCP, whereas these clusters fall well within the sensorimotor STN when employing the medial STN border as a reference point. CONCLUSIONS: By using the medial STN border as a patient-specific anatomic reference point in STN deep brain stimulation for Parkinson disease, we accounted for interindividual anatomic variability and provided accurate insight in the clustering of kinesthetic cells within the dorsolateral STN.


Asunto(s)
Mapeo Encefálico/métodos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/fisiología , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Microelectrodos , Persona de Mediana Edad , Neuronas/citología , Técnicas Estereotáxicas , Núcleo Subtalámico/citología
4.
Oper Neurosurg (Hagerstown) ; 19(2): 143-149, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31768551

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) surgery in patients with pre-existing cochlear implants (CIs) poses various challenges. We previously reported successful magnetic resonance imaging (MRI)-based, microelectrode recording (MER)-guided subthalamic DBS surgery in a patient with a pre-existing CI. Other case reports have described various DBS procedures in patients with pre-existing CIs using different techniques, leading to varying issues to address. A standardized operative technique and workflow for DBS surgery in the setting of pre-existing CIs is much needed. OBJECTIVE: To provide a standardized operative technique and workflow for DBS lead placement in the setting of pre-existing CIs. METHODS: Our operative technique is MRI-based and MER-guided, following a workflow involving coordination with a neurotology team to remove and re-implant the internal magnets of the CIs in order to safely perform DBS lead placement, altogether within a 24-h time frame. Intraoperative nonverbal communication with the patient is easily possible using a computer monitor. RESULTS: A 65-yr old woman with a 10-yr history of craniocervical dystonia and pre-existing bilateral CIs underwent successful bilateral pallidal DBS surgery at our institution. No merging errors or difficulties in targeting globus pallidus internus were experienced. Also, inactivated CIs do not interfere with MER nor with stimulation, and intraoperative communication with the patient using a computer monitor proved feasible and satisfactory. CONCLUSION: DBS procedures are safe and feasible in patients with pre-existing CIs if precautions are taken following our workflow.


Asunto(s)
Implantes Cocleares , Estimulación Encefálica Profunda , Anciano , Femenino , Globo Pálido , Humanos , Resultado del Tratamiento , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA