Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Development ; 143(11): 1958-70, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27068110

RESUMEN

Thyroid follicles, the functional units of the thyroid gland, are delineated by a monolayer of thyrocytes resting on a continuous basement membrane. The developmental mechanisms of folliculogenesis, whereby follicles are formed by the reorganization of a non-structured mass of non-polarized epithelial cells, are largely unknown. Here we show that assembly of the epithelial basement membrane is crucial for folliculogenesis and is controlled by endothelial cell invasion and by BMP-Smad signaling in thyrocytes. Thyroid-specific Smad1 and Smad5 double-knockout (Smad1/5(dKO)) mice displayed growth retardation, hypothyroidism and defective follicular architecture. In Smad1/5(dKO) embryonic thyroids, epithelial cells remained associated in large clusters and formed small follicles. Although similar follicular defects are found in Vegfa knockout (Vegfa(KO)) thyroids, Smad1/5(dKO) thyroids had normal endothelial cell density yet impaired endothelial differentiation. Interestingly, both Vegfa(KO) and Smad1/5(dKO) thyroids displayed impaired basement membrane assembly. Furthermore, conditioned medium (CM) from embryonic endothelial progenitor cells (eEPCs) rescued the folliculogenesis defects of both Smad1/5(dKO) and Vegfa(KO) thyroids. Laminin α1, ß1 and γ1, abundantly released by eEPCs into CM, were crucial for folliculogenesis. Thus, epithelial Smad signaling and endothelial cell invasion promote folliculogenesis via assembly of the basement membrane.


Asunto(s)
Membrana Basal/metabolismo , Células Endoteliales/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Glándula Tiroides/embriología , Animales , Membrana Basal/efectos de los fármacos , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Colágeno Tipo IV/metabolismo , Medios de Cultivo Condicionados/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hipotiroidismo/metabolismo , Laminina/metabolismo , Ratones Noqueados , Organogénesis/efectos de los fármacos , Organogénesis/genética , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Epiteliales Tiroideas/citología , Células Epiteliales Tiroideas/efectos de los fármacos , Células Epiteliales Tiroideas/metabolismo , Glándula Tiroides/citología , Glándula Tiroides/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Nat Chem Biol ; 12(8): 601-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27294321

RESUMEN

Metabolic enzymes are very specific. However, most of them show weak side activities toward compounds that are structurally related to their physiological substrates, thereby producing side products that may be toxic. In some cases, 'metabolite repair enzymes' eliminating side products have been identified. We show that mammalian glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase, two core glycolytic enzymes, produce 4-phosphoerythronate and 2-phospho-L-lactate, respectively. 4-Phosphoerythronate strongly inhibits an enzyme of the pentose phosphate pathway, whereas 2-phospho-L-lactate inhibits the enzyme producing the glycolytic activator fructose 2,6-bisphosphate. We discovered that a single, widely conserved enzyme, known as phosphoglycolate phosphatase (PGP) in mammals, dephosphorylates both 4-phosphoerythronate and 2-phospho-L-lactate, thereby preventing a block in the pentose phosphate pathway and glycolysis. Its yeast ortholog, Pho13, similarly dephosphorylates 4-phosphoerythronate and 2-phosphoglycolate, a side product of pyruvate kinase. Our work illustrates how metabolite repair enzymes can make up for the limited specificity of metabolic enzymes and permit high flux in central metabolic pathways.


Asunto(s)
Glicolatos/metabolismo , Glucólisis , Lactatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Azúcares Ácidos/metabolismo , Glicolatos/química , Glicolatos/toxicidad , Glucólisis/efectos de los fármacos , Células HCT116 , Humanos , Lactatos/química , Lactatos/toxicidad , Vía de Pentosa Fosfato/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/deficiencia , Fosforilación , Piruvato Quinasa/metabolismo , Saccharomyces cerevisiae/enzimología , Especificidad por Sustrato , Azúcares Ácidos/química , Azúcares Ácidos/toxicidad
3.
Biochem J ; 458(3): 439-48, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24423178

RESUMEN

The p53-induced protein TIGAR [TP53 (tumour protein 53)-induced glycolysis and apoptosis regulator] is considered to be a F26BPase (fructose-2,6-bisphosphatase) with an important role in cancer cell metabolism. The reported catalytic efficiency of TIGAR as an F26BPase is several orders of magnitude lower than that of the F26BPase component of liver or muscle PFK2 (phosphofructokinase 2), suggesting that F26BP (fructose 2,6-bisphosphate) might not be the physiological substrate of TIGAR. We therefore set out to re-evaluate the biochemical function of TIGAR. Phosphatase activity of recombinant human TIGAR protein was tested on a series of physiological phosphate esters. The best substrate was 23BPG (2,3-bisphosphoglycerate), followed by 2PG (2-phosphoglycerate), 2-phosphoglycolate and PEP (phosphoenolpyruvate). In contrast the catalytic efficiency for F26BP was approximately 400-fold lower than that for 23BPG. Using genetic and shRNA-based cell culture models, we show that loss of TIGAR consistently leads to an up to 5-fold increase in the levels of 23BPG. Increases in F26BP levels were also observed, albeit in a more limited and cell-type dependent manner. The results of the present study challenge the concept that TIGAR acts primarily on F26BP. This has significant implications for our understanding of the metabolic changes downstream of p53 as well as for cancer cell metabolism in general. It also suggests that 23BPG might play an unrecognized function in metabolic control.


Asunto(s)
Glicolatos/química , Péptidos y Proteínas de Señalización Intracelular/química , Monoéster Fosfórico Hidrolasas/química , 2,3-Difosfoglicerato/química , Animales , Proteínas Reguladoras de la Apoptosis , Glicolatos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Músculo Esquelético/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Recombinantes/química , Especificidad por Sustrato , Transcripción Genética
4.
J Mol Med (Berl) ; 98(1): 135-148, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31838577

RESUMEN

The B7 family member, B7H6, is a ligand for the natural killer cell receptor NKp30. B7H6 is hardly expressed on normal tissues, but undergoes upregulation on different types of tumors, implicating it as an attractive target for cancer immunotherapy. The molecular mechanisms that control B7H6 expression are poorly understood. We report that in contrast to other NK cell ligands, endoplasmic reticulum (ER) stress upregulates B7H6 mRNA levels and surface expression. B7H6 induction by ER stress requires protein kinase R-like ER kinase (PERK), one of the three canonical sensors of the unfolded protein response. PERK phosphorylates eIF2α, which regulates protein synthesis and gene expression. Because eIF2α is phosphorylated by several kinases following different stress conditions, the program downstream to eIF2α phosphorylation is called the integrated stress response (ISR). Several drugs were reported to promote the ISR. Nelfinavir and lopinavir, two clinically approved HIV protease inhibitors, promote eIF2α phosphorylation by different mechanisms. We show that nelfinavir and lopinavir sustainably instigate B7H6 expression at their pharmacologically relevant concentrations. As such, ER stress and ISR conditions sensitize melanoma targets to CAR-T cells directed against B7H6. Our study highlights a novel mechanism to induce B7H6 expression and suggests a pharmacological approach to improve B7H6-directed immunotherapy. KEY MESSAGES: B7H6 is induced by ER stress in a PERK-dependent mechanism. Induction of B7H6 is obtained pharmacologically by HIV protease inhibitors. Exposure of tumor cells to the HIV protease inhibitor nelfinavir improves the recognition by B7H6-directed CAR-T.


Asunto(s)
Antígenos B7/metabolismo , Estrés del Retículo Endoplásmico/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , Lopinavir/farmacología , Nelfinavir/farmacología , Transducción de Señal/efectos de los fármacos , Antígenos B7/genética , Donantes de Sangre , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Fosforilación/efectos de los fármacos , Receptores Quiméricos de Antígenos/genética , Linfocitos T/inmunología , Transducción Genética , Transfección , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
5.
Nat Commun ; 7: 11534, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27194101

RESUMEN

Mutations in genes required for the glycosylation of α-dystroglycan lead to muscle and brain diseases known as dystroglycanopathies. However, the precise structure and biogenesis of the assembled glycan are not completely understood. Here we report that three enzymes mutated in dystroglycanopathies can collaborate to attach ribitol phosphate onto α-dystroglycan. Specifically, we demonstrate that isoprenoid synthase domain-containing protein (ISPD) synthesizes CDP-ribitol, present in muscle, and that both recombinant fukutin (FKTN) and fukutin-related protein (FKRP) can transfer a ribitol phosphate group from CDP-ribitol to α-dystroglycan. We also show that ISPD and FKTN are essential for the incorporation of ribitol into α-dystroglycan in HEK293 cells. Glycosylation of α-dystroglycan in fibroblasts from patients with hypomorphic ISPD mutations is reduced. We observe that in some cases glycosylation can be partially restored by addition of ribitol to the culture medium, suggesting that dietary supplementation with ribitol should be evaluated as a therapy for patients with ISPD mutations.


Asunto(s)
Distroglicanos/metabolismo , Proteínas de la Membrana/metabolismo , Azúcares de Nucleósido Difosfato/biosíntesis , Nucleotidiltransferasas/metabolismo , Proteínas/metabolismo , Animales , Glicosilación , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Pentosiltransferasa , Ratas , Ribosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA