RESUMEN
Human cathepsin K (CatK) stands out as a promising target for the treatment of osteoporosis, considering its role in degrading the bone matrix. Given the small and shallow S2 subsite of CatK and considering its preference for proline or hydroxyproline, we now propose the rigidification of the leucine fragment found at the P2 position in a dipeptidyl-based inhibitor, generating rigid proline-based analogs. Accordingly, with these new proline-based peptidomimetics inhibitors, we selectively inhibited CatK against other human cathepsins (B, L and S). Among these new ligands, the most active one exhibited a high affinity (pKi = 7.3 - 50.1 nM) for CatK and no inhibition over the other cathepsins. This specific inhibitor harbors two novel substituents never employed in other CatK inhibitors: the trifluoromethylpyrazole and the 4-methylproline at P3 and P2 positions. These results broaden and advance the path toward new potent and selective inhibitors for CatK.
Asunto(s)
Catepsina K , Peptidomiméticos , Prolina , Catepsina K/antagonistas & inhibidores , Catepsina K/metabolismo , Peptidomiméticos/farmacología , Peptidomiméticos/química , Peptidomiméticos/síntesis química , Prolina/química , Prolina/farmacología , Humanos , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a DrogaRESUMEN
Covalent inhibitors are assuming central importance in drug discovery projects, especially in this pandemic scenario. Many research groups have focused their attention on inhibiting viral proteases or human proteases such as cathepsin L (hCatL). The inhibition of these critical enzymes may impair viral replication. However, molecular modeling of covalent ligands is challenging since covalent and noncovalent ligand-bound states must be considered in the binding process. In this work, we evaluated the suitability of free energy perturbation (FEP) calculations as a tool for predicting the binding affinity of reversible covalent inhibitors of hCatL. Our strategy relies on the relative free energy calculated for both covalent and noncovalent complexes and the free energy changes have been compared with experimental data for eight nitrile-based inhibitors, including three new inhibitors of hCatL. Our results demonstrate that the covalent complex can be employed to properly rank the inhibitors. Nevertheless, a comparison of the free energy changes in both noncovalent and covalent states is valuable to interpret the effect triggered by the formation of the covalent bond on the interactions played by functional groups distant from the warhead. Overall, FEP can be employed as a powerful predictor tool in developing and understanding the activity of reversible covalent inhibitors.
Asunto(s)
Descubrimiento de Drogas , Entropía , Humanos , Ligandos , Modelos Moleculares , TermodinámicaRESUMEN
Human cathepsin B (CatB) is an important biological target in cancer therapy. In this work, we performed a knowledge-based design approach and the synthesis of a new set of 19 peptide-like nitrile-based cathepsin inhibitors. Reported compounds were assayed against a panel of human cysteine proteases: CatB, CatL, CatK, and CatS. Three compounds (7h, 7i, and 7j) displayed nanomolar inhibition of CatB and selectivity over CatK and CatL. The selectivity was achieved by using the combination of a para biphenyl ring at P3, halogenated phenylalanine in P2 and Thr-O-Bz group at P1. Likewise, compounds 7i and 7j showed selective CatB inhibition among the panel of enzymes studied. We have also described a successful example of bioisosteric replacement of the amide bond for a sulfonamide one [7e â 6b], where we observed an increase in affinity and selectivity for CatB while lowering the compound lipophilicity (ilogP). Our knowledge-based design approach and the respective structure-activity relationships provide insights into the specific ligand-target interactions for therapeutically relevant cathepsins.
Asunto(s)
Amidas/farmacología , Aminas/farmacología , Catepsina B/antagonistas & inhibidores , Catepsina L/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Amidas/síntesis química , Amidas/química , Aminas/síntesis química , Aminas/química , Catepsina B/metabolismo , Catepsina L/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-ActividadRESUMEN
One tactic for cysteine protease inhibition is to form a covalent bond between an electrophilic atom of the inhibitor and the thiol of the catalytic cysteine. In this study, we evaluate the reaction free energy obtained from a hybrid quantum mechanical/molecular mechanical (QM/MM) free energy profile as a predictor of affinity for reversible, covalent inhibitors of rhodesain. We demonstrate that the reaction free energy calculated with the PM6/MM potential is in agreement with the experimental data and suggest that the free energy profile for covalent bond formation in a protein environment may be a useful tool for the inhibitor design.
Asunto(s)
Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Teoría Cuántica , Proteasas de Cisteína/química , Ligandos , Modelos Moleculares , Conformación Proteica , TermodinámicaRESUMEN
Cysteine proteases (CPs) are involved in a myriad of actions that include not only protein degradation, but also play an essential biological role in infectious and systemic diseases such as cancer. CPs also act as biomarkers and can be reached by active-based probes for diagnostic and mechanistic purposes that are critical in health and disease. In this paper, we present the modulation of a CP panel of parasites and mammals (Trypanosoma cruzi cruzain, LmCPB, CatK, CatL and CatS), whose inhibition by nitrile peptidomimetics allowed the identification of specificity and selectivity for a given CP. The activity cliffs identified at the CP inhibition level are useful for retrieving trends through multiple structure-activity relationships. For two of the cruzain inhibitors (10g and 4e), both enthalpy and entropy are favourable to Gibbs binding energy, thus overcoming enthalpy-entropy compensation (EEC). Group contribution of individual molecular modification through changes in enthalpy and entropy results in a separate partition on the relative differences of Gibbs binding energy (ΔΔG). Overall, this study highlights the role of CPs in polypharmacology and multi-target screening, which represents an imperative trend in the actual drug discovery effort.
Asunto(s)
Proteasas de Cisteína/química , Animales , Mamíferos , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-ActividadRESUMEN
Nitrile reversible covalent inhibitors of human cathepsin L (hCatL) bind covalently to the side chain of the catalytic Cys25 residue in the S1 pocket to form thioimidates. Predicting the binding of reversible covalent inhibitors is essential for their practical application in drug design. In this report, five nitrile-based inhibitors coded Neq0570, Neq0710, Neq0802, Neq0803 and Neq0804 had their hCatL inhibition constants, Ki, determined. These analogs of the prototypical Neq0570 are halogenated reversible covalent inhibitors of hCatL, which bear a halogen atom in the meta position of the P3 benzyl ring that can form a halogen bond with the Gly61 of the hCatL. To describe halogen bonding interaction in an inhibitor-hCatL complex, we applied an extra point (EP) of charge to represent the anisotropic distribution of charge on the iodine, bromine and chlorine atoms. Besides, we have used alchemical free energy calculations for evaluating the overall relative binding free energies of these inhibitors using a two-state binding model: noncovalent and covalent bond states. Our results show that free energy perturbation (FEP) can predict the hCatL binding affinities of halogenated reversible covalent inhibitors in close agreement with experiments.
RESUMEN
Nitriles have broad applications in medicinal chemistry, with more than 60 small molecule drugs on the market containing the cyano functional group. In addition to the well-known noncovalent interactions that nitriles can perform with macromolecular targets, they are also known to improve drug candidates' pharmacokinetic profiles. Moreover, the cyano group can be used as an electrophilic warhead to covalently bind an inhibitor to a target of interest, forming a covalent adduct, a strategy that can present benefits over noncovalent inhibitors. This approach has gained much notoriety in recent years, mainly with diabetes and COVID-19-approved drugs. Nevertheless, the application of nitriles in covalent ligands is not restricted to it being the reactive center, as it can also be employed to convert irreversible inhibitors into reversible ones, a promising strategy for kinase inhibition and protein degradation. In this review, we introduce and discuss the roles of the cyano group in covalent inhibitors, how to tune its reactivity and the possibility of achieving selectivity only by replacing the warhead. Finally, we provide an overview of nitrile-based covalent compounds in approved drugs and inhibitors recently described in the literature.
RESUMEN
INTRODUCTION: Cathepsin K (CatK) is a lysosomal cysteine protease and the predominant cathepsin expressed in osteoclasts, where it degrades the bone matrix. Hence, CatK is an attractive therapeutic target related to diseases characterized by bone resorption, like osteoporosis. AREAS COVERED: This review summarizes the patent literature from 2011 to 2021 on CatK inhibitors and their potential use as new treatments for osteoporosis. The inhibitors were classified by their warheads, with the most explored nitrile-based inhibitors. Promising in vivo results have also been disclosed. EXPERT OPINION: As one of the most potent lysosomal proteins whose primary function is to mediate bone resorption, cathepsin K remains an excellent target for therapeutic intervention. Nevertheless, there is no record of any approved drug that targets CatK. The most notable cases of drug candidates targeting CatK were balicatib and odanacatib, which reached Phase II and III clinical trials, respectively, but did not enter the market. Further developments include exploring new chemical entities beyond the nitrile-based chemical space, with improved ADME and safety profiles. In addition, CatK's role in cancer immunoexpression and its involvement in the pathophysiology of osteo- and rheumatoid arthritis have raised the race to develop activity-based probes with excellent potency and selectivity.
Asunto(s)
Resorción Ósea , Osteoporosis , Resorción Ósea/tratamiento farmacológico , Catepsina K/metabolismo , Humanos , Nitrilos/farmacología , Nitrilos/uso terapéutico , Osteoporosis/tratamiento farmacológico , Patentes como AsuntoRESUMEN
The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. Hence, peptidomimetic cruzipain inhibitors having a reactive group (known as warhead) are subject to continuous studies to discover novel antichagasic compounds. Here, we evaluated how different warheads for a set of structurally similar related compounds could inhibit the activity of cruzipain and, ultimately, their trypanocidal effect. We first investigated in silico the intrinsic reactivity of these compounds by applying the Fukui index to correlate it with the enzymatic affinity. Then, we evaluated their potency against T. cruzi (Y and Tulahuen strains), which revealed the reversible cruzain inhibitor Neq0656 as a better trypanocidal agent (ECY.strain 50 = 0.1 µM; SI = 58.4) than the current drug benznidazole (ECY.strain 50 = 5.1 µM; SI > 19.6). We also measured the half-life time by HPLC analysis of three lead compounds in the presence of glutathione and cysteine to experimentally assess their intrinsic reactivity. Results clearly illustrated the reactivity trend for the warheads (azanitrile > aldehyde > nitrile), where the aldehyde displayed an intermediate intrinsic reactivity. Therefore, the aldehyde bearing peptidomimetic compounds should be subject for in-depth evaluation in the drug discovery process.