Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 124, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229402

RESUMEN

Haloarchaea, like many other microorganisms, have developed defense mechanisms such as universal stress proteins (USPs) to cope with environmental stresses affecting microbial growth. Despite the wide distribution of these proteins in Archaea, their biochemical characteristics still need to be discovered, and there needs to be more knowledge about them focusing on halophilic Archaea. Therefore, elucidating the role of USPs would provide valuable information to improve future biotechnological applications. Accordingly, transcriptional expression of the 37 annotated USPs in the Haloferax mediterranei genome has been examined under different stress conditions. From a global perspective, finding a clear tendency between particular USPs and specific stress conditions was not possible. Contrary, data analysis indicates that there is a recruitment mechanism of proteins with a similar sequence able to modulate the H. mediterranei growth, accelerating or slowing it, depending on their number. In fact, only three of these USPs were expressed in all the tested conditions, pointing to the cell needing a set of USPs to cope with stress conditions. After analysis of the RNA-Seq data, three differentially expressed USPs were selected and homologously overexpressed. According to the growth data, the overexpression of USPs induces a gain of tolerance in response to stress, as a rule. Therefore, this is the only work that studies all the USPs in an archaeon. It represents a significant first base to continue advancing, not only in this important family of stress proteins but also in the field of biotechnology and, at an industrial level, to improve applications such as designing microorganisms resistant to stress situations. KEY POINTS: • Expression of Haloferax mediterranei USPs has been analyzed in stress conditions. • RNA-seq analysis reveals that most of the USPs in H. mediterranei are downregulated. • Homologous overexpression of USPs results in more stress-tolerant strains.


Asunto(s)
Haloferax mediterranei , Haloferax mediterranei/genética , Proteínas de Choque Térmico/metabolismo , Archaea
2.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38203750

RESUMEN

The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq found in the Eukarya, Archaea, and Bacteria domains. Archaeal Lsm proteins have been shown to bind sRNAs and are probably involved in various cellular processes, suggesting a similar function in regulating sRNAs by Hfq in bacteria. Moreover, archaeal Lsm proteins probably represent the ancestral Lsm domain from which eukaryotic Sm proteins have evolved. In this work, Haloferax mediterranei was used as a model organism because it has been widely used to investigate the nitrogen cycle and its regulation in Haloarchaea. Predicting this protein's secondary and tertiary structures has resulted in a three-dimensional model like the solved Lsm protein structure of Archaeoglobus fulgidus. To obtain information on the oligomerization state of the protein, homologous overexpression and purification by means of molecular exclusion chromatography have been performed. The results show that this protein can form hexameric complexes, which can aggregate into 6 or 12 hexameric rings depending on the NaCl concentration and without RNA. In addition, the study of transcriptional expression via microarrays has allowed us to obtain the target genes regulated by the Lsm protein under nutritional stress conditions: nitrogen or carbon starvation. Microarray analysis has shown the first universal stress proteins (USP) in this microorganism that mediate survival in situations of nitrogen deficiency.


Asunto(s)
Proteínas Arqueales , Haloferax mediterranei , Haloferax mediterranei/genética , Proteínas Arqueales/genética , Proteínas de Choque Térmico , Archaea , Nitrógeno
3.
J Biol Chem ; 297(1): 100871, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34126068

RESUMEN

Mucus forms an important protective barrier that minimizes bacterial contact with the colonic epithelium. Intestinal mucus is organized in a complex network with several specific proteins, including the mucin-2 (MUC2) and the abundant IgGFc-binding protein, FCGBP. FCGBP is expressed in all intestinal goblet cells and is secreted into the mucus. It is comprised of repeated von Willebrand D (vWD) domain assemblies, most of which have a GDPH amino acid sequence that can be autocatalytically cleaved, as previously observed in the mucins MUC2 and mucin-5AC. However, the functions of FCGBP in the mucus are not understood. We show that all vWD domains of FCGBP with a GDPH sequence are cleaved and that these cleavages occur early during biosynthesis in the endoplasmic reticulum. All cleaved fragments, however, remain connected via a disulfide bond within each vWD domain. This cleavage generates a C-terminal-reactive Asp-anhydride that could react with other molecules, such as MUC2, but this was not observed. Quantitative analyses by MS showed that FCGBP was mainly soluble in chaotropic solutions, whereas MUC2 was insoluble, and most of the secreted FCGBP was not covalently bound to MUC2. Although FCGBP has been suggested to bind immunoglobulin G, we were unable to reproduce this binding in vitro using purified proteins. In conclusion, while the function of FCGBP is still unknown, our results suggest that it does not contribute to covalent crosslinking in the mucus, nor incorporate immunoglobulin G into mucus, instead the single disulfide bond linking each fragment could mediate controlled dissociation.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Mucosa Intestinal/metabolismo , Proteolisis , Animales , Células CHO , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Cricetinae , Cricetulus , Disulfuros/química , Humanos , Ratones , Ratones Endogámicos C57BL , Mucina 2/metabolismo , Dominios Proteicos , Factor de von Willebrand/química
4.
J Synchrotron Radiat ; 28(Pt 1): 64-70, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399553

RESUMEN

Protein dynamics contribute to protein function on different time scales. Ultrafast X-ray diffraction snapshots can visualize the location and amplitude of atom displacements after perturbation. Since amplitudes of ultrafast motions are small, high-quality X-ray diffraction data is necessary for detection. Diffraction from bovine trypsin crystals using single femtosecond X-ray pulses was recorded at FemtoMAX, which is a versatile beamline of the MAX IV synchrotron. The time-over-threshold detection made it possible that single photons are distinguishable even under short-pulse low-repetition-rate conditions. The diffraction data quality from FemtoMAX beamline enables atomic resolution investigation of protein structures. This evaluation is based on the shape of the Wilson plot, cumulative intensity distribution compared with theoretical distribution, I/σ, Rmerge/Rmeas and CC1/2 statistics versus resolution. The FemtoMAX beamline provides an interesting alternative to X-ray free-electron lasers when studying reversible processes in protein crystals.


Asunto(s)
Cristalografía por Rayos X , Tripsina/química , Animales , Bovinos , Sustancias Macromoleculares/química , Fotones , Sincrotrones
5.
Arch Microbiol ; 204(1): 6, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34870747

RESUMEN

Halophilic archaea represent a promising natural source of carotenoids. However, little information is available about these archaeal metabolites and their biological effects. In the present work, carotenoids of strains Haloferax sp. ME16, Halogeometricum sp. ME3 and Haloarcula sp. BT9, isolated from Algerian salt lakes, were produced, extracted and identified by high-performance liquid chromatography-diode array detector and liquid chromatography-mass spectrometry. Analytical results revealed a variation in the composition depending on the strain with a predominance of bacterioruberin. The evaluation of antioxidant capacity using ABTS [(2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] and DPPH (2,2-diphenyl-1-picrylhydrazyl) assays showed that these extracts have a strong antioxidant potential, in particular those of Haloferax sp. ME16 which displayed antioxidant power significantly higher than that of ascorbic acid used as standard. Antibacterial activity of carotenoid extracts against four human-pathogenic strains and four fish-pathogenic strains was evaluated by agar disk diffusion method. The results showed a good antibacterial activity. These findings suggest that the C50 carotenoids from the studied strains offer promising prospects for biotechnological applications.


Asunto(s)
Carotenoides , Lagos , Animales , Antioxidantes/análisis , Antioxidantes/farmacología , Carotenoides/análisis , Cromatografía Líquida de Alta Presión , Humanos , Extractos Vegetales
6.
Mol Genet Genomics ; 295(3): 775-785, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32170429

RESUMEN

The regulatory networks involved in the uptake and metabolism of different nitrogen sources in response to their availability are crucial in all organisms. Nitrogen metabolism pathways have been studied in detail in archaea such as the extreme halophilic archaeon Haloferax mediterranei. However, knowledge about nitrogen metabolism regulation in haloarchaea is very scarce, and no transcriptional regulators involved in nitrogen metabolism have been identified to date. Advances in the molecular biology field have revealed that many small RNAs (sRNAs) are involved in the regulation of a diverse metabolic pathways. Surprisingly, no studies on regulation mediated by sRNAs have focused on the response to environmental fluctuations in nitrogen in haloarchaea. To identify sRNAs involved in the transcriptional regulation of nitrogen assimilation genes in Haloferax mediterranei and, thus, propose a novel regulatory mechanism, RNA-Seq was performed using cells grown in the presence of two different nitrogen sources. The differential transcriptional expression analysis of the RNA-Seq data revealed differences in the transcription patterns of 102 sRNAs according to the nitrogen source, and the molecular functions, cellular locations and biological processes with which the target genes were associated were predicted. These results enabled the identification of four sRNAs that could be directly related to the regulation of genes involved in nitrogen metabolism. This work provides the first proposed regulatory mechanism of nitrogen assimilation-related gene expression by sRNAs in haloarchaea as an alternative to transcriptional regulation mediated by proteins.


Asunto(s)
Proteínas Arqueales/genética , Regulación de la Expresión Génica Arqueal , Haloferax mediterranei/genética , Haloferax mediterranei/metabolismo , Nitrógeno/metabolismo , ARN de Archaea/genética , ARN Pequeño no Traducido/genética , Perfilación de la Expresión Génica , Haloferax mediterranei/crecimiento & desarrollo
7.
J Basic Microbiol ; 60(7): 624-638, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32338407

RESUMEN

A set of 110 extremely halophilic archaeal strains were isolated from seven distinct saline habitats located in different regions of Algeria. The physicochemical characterization of the samples showed that these habitats were thalassohaline. The carotenoid production from isolated strains varied from 0.1 to 3.68 µg/ml. Based on their physiological characteristics and pigment production, 43 strains were selected and identified by means of phenotypic tests and 16S ribosomal RNA gene sequencing. Phylogenetic analysis indicated that the isolates corresponded to the class Halobacteria and were closely related to genera Halorubrum, Haloarcula, Haloferax, Natrinema, Halogeometricum, Haloterrigena, and Halopiger. Carotenoids of the highest producer, strain Halorubrum sp. BS2 were identified using high-performance liquid chromatography-diode array detector and liquid chromatography-mass spectrometry. Bacterioruberin and bisanhydrobacterioruberin were the predominant carotenoids. The scavenging activity of these carotenoids reached 99% at a concentration of 18 µg/ml, which was much higher than that of ascorbic acid used as a reference compound. These carotenoids also exhibited significant antibacterial activities against four human-pathogenic strains and four fish-pathogenic strains. Variations in salinity, agitation rate, temperature, and light intensity were found to influence growth and carotenoid production of Halorubrum sp. BS2. Our results suggest that halophilic archaea represent a potential source for carotenoids, which are characterized by high antioxidant and antibacterial activities.


Asunto(s)
Antibacterianos/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Halorubrum/clasificación , Halorubrum/metabolismo , Argelia , Antibacterianos/farmacología , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Bioprospección , Carotenoides/farmacología , ADN de Archaea/genética , Halorubrum/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S/genética , Salinidad
8.
Biochim Biophys Acta ; 1850(4): 587-94, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25512066

RESUMEN

BACKGROUND: Haloferax mediterranei is a denitrifying haloarchaeon using nitrate as a respiratory electron acceptor under anaerobic conditions in a reaction catalysed by pNarGH. Other ions such as bromate, perchlorate and chlorate can also be reduced. METHODS: Hfx. mediterranei cells were grown anaerobically with nitrate as electron acceptor and chlorate reductase activity measured in whole cells and purified nitrate reductase. RESULTS: No genes encoding (per)chlorate reductases have been detected either in the Hfx. mediterranei genome or in other haloarchaea. However, a gene encoding a chlorite dismutase that is predicted to be exported across the cytoplasmic membrane has been identified in Hfx. mediterranei genome. Cells did not grow anaerobically in presence of chlorate as the unique electron acceptor. However, cells anaerobically grown with nitrate and then transferred to chlorate-containing growth medium can grow a few generations. Chlorate reduction by the whole cells, as well as by pure pNarGH, has been characterised. No clear chlorite dismutase activity could be detected. CONCLUSIONS: Hfx. mediterranei pNarGH has its active site on the outer-face of the cytoplasmic membrane and reacts with chlorate and perchlorate. Biochemical characterisation of this enzymatic activity suggests that Hfx. mediterranei or its pure pNarGH could be of great interest for waste water treatments or to better understand biological chlorate reduction in early Earth or Martian environments. GENERAL SIGNIFICANCE: Some archaea species reduce (per)chlorate. However, results here presented as well as those recently reported by Liebensteiner and co-workers [1] suggest that complete perchlorate reduction in archaea follows different rules in terms of biological reactions.


Asunto(s)
Cloratos/metabolismo , Haloferax mediterranei/metabolismo , Secuencia de Aminoácidos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Nitrato-Reductasa/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo
9.
Mar Drugs ; 13(9): 5508-32, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26308012

RESUMEN

The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.


Asunto(s)
Carotenoides/metabolismo , Haloferax/metabolismo , Animales , Biotecnología/economía , Biotecnología/métodos , Humanos
10.
Biochim Biophys Acta ; 1834(1): 16-23, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23069245

RESUMEN

GlnK proteins belong to the PII superfamily of signal transduction proteins and are involved in the regulation of nitrogen metabolism. These proteins are normally encoded in an operon together with the structural gene for the ammonium transporter AmtB. Haloferax mediterranei possesses two genes encoding for GlnK, specifically, glnK(1) and glnK(2). The present study marks the first investigation of PII proteins in haloarchaea, and provides evidence for the direct interaction between glutamine synthetase and both GlnK(1) and GlnK(2). Complex formation between glutamine synthetase and the two GlnK proteins is demonstrated with pure recombinant protein samples using in vitro activity assays, gel filtration chromatography and western blotting. This protein-protein interaction increases glutamine synthetase activity in the presence of 2-oxoglutarate. Separate experiments that were carried out with GlnK(1) and GlnK(2) produced equivalent results.


Asunto(s)
Amoníaco/metabolismo , Proteínas Arqueales/metabolismo , Proteínas Portadoras/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Haloferax mediterranei/metabolismo , Ácidos Cetoglutáricos/metabolismo
11.
Int J Biol Macromol ; 260(Pt 2): 129541, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244746

RESUMEN

Haloferax mediterranei, an extreme halophilic archaeon thriving in hypersaline environments, has acquired significant attention in biotechnological and biochemical research due to its remarkable ability to flourish in extreme salinity conditions. Transcription factors, essential in regulating diverse cellular processes, have become focal points in understanding its adaptability. This study delves into the role of the Lrp transcription factor, exploring its modulation of glnA, nasABC, and lrp gene promoters in vivo through ß-galactosidase assays. Remarkably, our findings propose Lrp as the pioneering transcriptional regulator of nitrogen metabolism identified in a haloarchaeon. This study suggests its potential role in activating or repressing assimilatory pathway enzymes (GlnA and NasA). The interaction between Lrp and these promoters is analyzed using Electrophoretic Mobility Shift Assay and Differential Scanning Fluorimetry, highlighting l-glutamine's indispensable role in stabilizing the Lrp-DNA complex. Our research uncovers that halophilic Lrp forms octameric structures in the presence of l-glutamine. The study reveals the three-dimensional structure of the Lrp as a homodimer using X-ray crystallography, confirming this state in solution by Small-Angle X-ray Scattering. These findings illuminate the complex molecular mechanisms driving Hfx. mediterranei's nitrogen metabolism, offering valuable insights about its gene expression regulation and enriching our comprehension of extremophile biology.


Asunto(s)
Haloferax mediterranei , Haloferax mediterranei/genética , Glutamina/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Nitrógeno/metabolismo
12.
Microorganisms ; 12(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38792858

RESUMEN

Tanning, crucial for leather production, relies heavily on chromium yet poses risks due to chromium's oxidative conversion, leading to significant wastewater and solid waste generation. Physico-chemical methods are typically used for heavy metal removal, but they have drawbacks, prompting interest in eco-friendly biological remediation techniques like biosorption, bioaccumulation, and biotransformation. The EU Directive (2018/850) mandates alternatives to landfilling or incineration for industrial textile waste management, highlighting the importance of environmentally conscious practices for leather products' end-of-life management, with composting being the most researched and viable option. This study aimed to isolate microorganisms from tannery wastewater and identify those responsible for different types of tanned leather biodegradation. Bacterial shifts during leather biodegradation were observed using a leather biodegradation assay (ISO 20136) with tannery and municipal wastewater as the inoculum. Over 10,000 bacterial species were identified in all analysed samples, with 7 bacterial strains isolated from tannery wastewaters. Identification of bacterial genera like Acinetobacter, Brevundimonas, and Mycolicibacterium provides insights into potential microbial candidates for enhancing leather biodegradability, wastewater treatment, and heavy metal bioremediation in industrial applications.

13.
Cell Rep ; 43(5): 114207, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38733585

RESUMEN

The MUC2 mucin protects the colonic epithelium by a two-layered mucus with an inner attached bacteria-free layer and an outer layer harboring commensal bacteria. CysD domains are 100 amino-acid-long sequences containing 10 cysteines that separate highly O-glycosylated proline, threonine, serine (PTS) regions in mucins. The structure of the second CysD, CysD2, of MUC2 is now solved by nuclear magnetic resonance. CysD2 shows a stable stalk region predicted to be partly covered by adjacent O-glycans attached to neighboring PTS sequences, whereas the CysD2 tip with three flexible loops is suggested to be well exposed. It shows transient dimer interactions at acidic pH, weakened at physiological pH. This transient interaction can be stabilized in vitro and in vivo by transglutaminase 3-catalyzed isopeptide bonds, preferring a specific glutamine residue on one flexible loop. This covalent dimer is modeled suggesting that CysD domains act as connecting hubs for covalent stabilization of mucins to form a protective mucus.


Asunto(s)
Mucina 2 , Dominios Proteicos , Transglutaminasas , Mucina 2/metabolismo , Mucina 2/química , Humanos , Transglutaminasas/metabolismo , Transglutaminasas/química , Modelos Moleculares , Cisteína/metabolismo , Cisteína/química , Secuencia de Aminoácidos , Multimerización de Proteína , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo
14.
Proteomics ; 13(8): 1371-4, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23420616

RESUMEN

In this work we report for the first time a post-translational modification of PII homologues from the Archaea Domain. Haloferax mediterranei is the first haloarchaea whose PII proteins have been studied, it possesses two of them (GlnK1 and GlnK2 ), both encoded adjacent to a gene for the ammonia transporter Amt. An approach based on 2DE, anti-GlnK immunoblot and peptide mass fingerprint (MALDI-TOF-MS) of the reactive spots showed that GlnK proteins in H. mediterranei are post-translationally uridylylated. A third spot with lower pI suggests the existence of a non-descript post-translational modification in this protein family.


Asunto(s)
Proteínas Arqueales/metabolismo , Haloferax mediterranei/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/análisis , Immunoblotting/métodos , Datos de Secuencia Molecular , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Mapeo Peptídico/métodos , Procesamiento Proteico-Postraduccional , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
15.
Res Microbiol ; 174(7): 104080, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37196775

RESUMEN

Archaea are microorganisms with great ability to colonize some of the most inhospitable environments in nature, managing to survive in places with extreme characteristics for most microorganisms. Its proteins and enzymes are stable and can act under extreme conditions in which other proteins and enzymes would degrade. These attributes make them ideal candidates for use in a wide range of biotechnological applications. This review describes the most important applications, both current and potential, that archaea present in Biotechnology, classifying them according to the sector to which the application is directed. It also analyzes the advantages and disadvantages of its use.


Asunto(s)
Archaea , Biotecnología , Archaea/genética , Archaea/metabolismo
16.
Microorganisms ; 11(5)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37317170

RESUMEN

The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq proteins. Sm and Lsm proteins are found in the Eukarya and Archaea domains, respectively, while Hfq proteins exist in the Bacteria domain. Even though Sm and Hfq proteins have been extensively studied, archaeal Lsm proteins still require further exploration. In this work, different bioinformatics tools are used to understand the diversity and distribution of 168 Lsm proteins in 109 archaeal species to increase the global understanding of these proteins. All 109 archaeal species analyzed encode one to three Lsm proteins in their genome. Lsm proteins can be classified into two groups based on molecular weight. Regarding the gene environment of lsm genes, many of these genes are located adjacent to transcriptional regulators of the Lrp/AsnC and MarR families, RNA-binding proteins, and ribosomal protein L37e. Notably, only proteins from species of the class Halobacteria conserved the internal and external residues of the RNA-binding site identified in Pyrococcus abyssi, despite belonging to different taxonomic orders. In most species, the Lsm genes show associations with 11 genes: rpl7ae, rpl37e, fusA, flpA, purF, rrp4, rrp41, hel308, rpoD, rpoH, and rpoN. We propose that most archaeal Lsm proteins are related to the RNA metabolism, and the larger Lsm proteins could perform different functions and/or act through other mechanisms of action.

17.
Biochimie ; 209: 61-72, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36708868

RESUMEN

The Archaea domain consists of a heterogeneous group of microorganisms with unique physiological properties that occupy a wide variety of niches in nature. Haloferax mediterranei is an extremely halophilic archaeon classified in the Phylum Euryarchaeota, which requires a high concentration of inorganic salts for optimal growth. In haloarchaea, transcription factors play a fundamental role in an adequate adaptation to environmental and nutritional changes, preserving the survival and integrity of the organism. To deepen knowledge of the Lrp/AsnC transcriptional regulator family, a lrp gene (HFX_RS01210) from this family has been studied. Site-directed mutagenesis has allowed us to identify the TATA-box and two potential sites of the transcriptional factor (TF) to its own promoter and autoregulate itself. Several approaches were carried out to elucidate whether this transcriptional regulator is involved in stresses due to heavy metals and limited nitrogen conditions. Characterization of the lrp deletion mutant and the Lrp overexpressed strain, suggests that the level of lrp expression depends on the nitrogen source and the presence of cobalt. The most striking results were obtained in the presence of nitrate as a nitrogen source due to the inability of the deletion mutant to grow. All these results confirm that Lrp is a powerful candidate for a regulatory role in the stress response, particularly under N-limiting conditions and the presence of cobalt.


Asunto(s)
Haloferax mediterranei , Haloferax mediterranei/genética , Haloferax mediterranei/metabolismo , Nitratos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nitrógeno/metabolismo
18.
Life (Basel) ; 13(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629622

RESUMEN

The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.

19.
Nat Commun ; 14(1): 1969, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031240

RESUMEN

The MUC2 mucin polymer is the main building unit of the intestinal mucus layers separating intestinal microbiota from the host epithelium. The MUC2 mucin is a large glycoprotein with a C-terminal domain similar to the MUC5AC and MUC5B mucins and the von Willebrand factor (VWF). A structural model of the C-terminal part of MUC2, MUC2-C, was generated by combining Cryo-electron microscopy, AlphaFold prediction, information of its glycosylation, and small angle X-ray scattering information. The globular VWD4 assembly in the N-terminal of MUC2-C is followed by 3.5 linear VWC domains that form an extended flexible structure before the C-terminal cystine-knot. All gel-forming mucins and VWF form tail-tail disulfide-bonded dimers in their C-terminal cystine-knot domain, but interestingly the MUC2 mucin has an extra stabilizing disulfide bond on the N-terminal side of the VWD4 domain, likely essential for a stable intestinal mucus barrier.


Asunto(s)
Cistina , Factor de von Willebrand , Microscopía por Crioelectrón , Intestinos , Mucina 5AC
20.
iScience ; 26(7): 106976, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534134

RESUMEN

This study investigates the role of survivin in epigenetic control of gene transcription through interaction with the polycomb repressive complex 2 (PRC2). PRC2 is responsible for silencing gene expression by trimethylating lysine 27 on histone 3. We observed differential expression of PRC2 subunits in CD4+ T cells with varying levels of survivin expression, and ChIP-seq results indicated that survivin colocalizes with PRC2 along DNA. Inhibition of survivin resulted in a significant increase in H3K27 trimethylation, implying that survivin prevents PRC2 from functioning. Peptide microarray showed that survivin interacts with peptides from PRC2 subunits, and machine learning revealed that amino acid composition contains relevant information for predicting survivin interaction. NMR and BLI experiments supported the interaction of survivin with PRC2 subunit EZH2. Finally, protein-protein docking revealed that the survivin-EZH2 interaction interface overlaps with catalytic residues of EZH2, potentially inhibiting its H3K27 methylation activity. These findings suggest that survivin inhibits PRC2 function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA