Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36638792

RESUMEN

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Asunto(s)
Envejecimiento , Epigénesis Genética , Animales , Envejecimiento/genética , Metilación de ADN , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genética
3.
Cell ; 173(1): 74-89.e20, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29570999

RESUMEN

A decline in capillary density and blood flow with age is a major cause of mortality and morbidity. Understanding why this occurs is key to future gains in human health. NAD precursors reverse aspects of aging, in part, by activating sirtuin deacylases (SIRT1-SIRT7) that mediate the benefits of exercise and dietary restriction (DR). We show that SIRT1 in endothelial cells is a key mediator of pro-angiogenic signals secreted from myocytes. Treatment of mice with the NAD+ booster nicotinamide mononucleotide (NMN) improves blood flow and increases endurance in elderly mice by promoting SIRT1-dependent increases in capillary density, an effect augmented by exercise or increasing the levels of hydrogen sulfide (H2S), a DR mimetic and regulator of endothelial NAD+ levels. These findings have implications for improving blood flow to organs and tissues, increasing human performance, and reestablishing a virtuous cycle of mobility in the elderly.


Asunto(s)
Envejecimiento , Sulfuro de Hidrógeno/metabolismo , NAD/metabolismo , Animales , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Noqueados , Microvasos/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Neovascularización Fisiológica , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Nat Rev Mol Cell Biol ; 17(11): 679-690, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27552971

RESUMEN

The sirtuins (SIRT1-7) are a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacylases with remarkable abilities to prevent diseases and even reverse aspects of ageing. Mice engineered to express additional copies of SIRT1 or SIRT6, or treated with sirtuin-activating compounds (STACs) such as resveratrol and SRT2104 or with NAD+ precursors, have improved organ function, physical endurance, disease resistance and longevity. Trials in non-human primates and in humans have indicated that STACs may be safe and effective in treating inflammatory and metabolic disorders, among others. These advances have demonstrated that it is possible to rationally design molecules that can alleviate multiple diseases and possibly extend lifespan in humans.


Asunto(s)
Envejecimiento/efectos de los fármacos , Activadores de Enzimas/uso terapéutico , Sirtuinas/fisiología , Estilbenos/uso terapéutico , Regulación Alostérica , Animales , Ensayos Clínicos como Asunto , Activadores de Enzimas/farmacología , Humanos , NAD/fisiología , Resveratrol , Estilbenos/farmacología
6.
Nature ; 588(7836): 124-129, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268865

RESUMEN

Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.


Asunto(s)
Envejecimiento/genética , Reprogramación Celular/genética , Metilación de ADN , Epigénesis Genética , Ojo , Regeneración Nerviosa/genética , Visión Ocular/genética , Visión Ocular/fisiología , Envejecimiento/fisiología , Animales , Axones/fisiología , Línea Celular Tumoral , Supervivencia Celular , Proteínas de Unión al ADN/genética , Dependovirus/genética , Dioxigenasas , Modelos Animales de Enfermedad , Ojo/citología , Ojo/inervación , Ojo/patología , Femenino , Vectores Genéticos/genética , Glaucoma/genética , Glaucoma/patología , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Factor 3 de Transcripción de Unión a Octámeros/genética , Traumatismos del Nervio Óptico/genética , Proteínas Proto-Oncogénicas/genética , Células Ganglionares de la Retina/citología , Factores de Transcripción SOXB1/genética , Transcriptoma/genética
7.
Nature ; 572(7768): 194-198, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31341281

RESUMEN

Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios.


Asunto(s)
Mapeo Geográfico , Nematodos/clasificación , Nematodos/aislamiento & purificación , Suelo/parasitología , Animales , Biomasa , Carbono/metabolismo , Nematodos/química , Filogeografía , Reproducibilidad de los Resultados , Incertidumbre
8.
Environ Microbiol ; 26(7): e16673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001572

RESUMEN

Protists, a crucial part of the soil food web, are increasingly acknowledged as significant influencers of nutrient cycling and plant performance in farmlands. While topographical and climatic factors are often considered to drive microbial communities on a continental scale, higher trophic levels like heterotrophic protists also rely on their food sources. In this context, bacterivores have received more attention than fungivores. Our study explored the connection between the community composition of protists (specifically Rhizaria and Cercozoa) and fungi across 156 cereal fields in Europe, spanning a latitudinal gradient of 3000 km. We employed a machine-learning approach to measure the significance of fungal communities in comparison to bacterial communities, soil abiotic factors, and climate as determinants of the Cercozoa community composition. Our findings indicate that climatic variables and fungal communities are the primary drivers of cercozoan communities, accounting for 70% of their community composition. Structural equation modelling (SEM) unveiled indirect climatic effects on the cercozoan communities through a change in the composition of the fungal communities. Our data also imply that fungivory might be more prevalent among protists than generally believed. This study uncovers a hidden facet of the soil food web, suggesting that the benefits of microbial diversity could be more effectively integrated into sustainable agriculture practices.


Asunto(s)
Grano Comestible , Hongos , Microbiología del Suelo , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Europa (Continente) , Grano Comestible/microbiología , Suelo/química , Cercozoos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Cadena Alimentaria , Microbiota , Biodiversidad , Micobioma , Agricultura
9.
New Phytol ; 239(4): 1434-1448, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37301991

RESUMEN

Plants impact the development of their rhizosphere microbial communities. It is yet unclear to what extent the root cap and specific root zones contribute to microbial community assembly. To test the roles of root caps and root hairs in the establishment of microbiomes along maize roots (Zea mays), we compared the composition of prokaryote (archaea and bacteria) and protist (Cercozoa and Endomyxa) microbiomes of intact or decapped primary roots of maize inbred line B73 with its isogenic root hairless (rth3) mutant. In addition, we tracked gene expression along the root axis to identify molecular control points for an active microbiome assembly by roots. Absence of root caps had stronger effects on microbiome composition than the absence of root hairs and affected microbial community composition also at older root zones and at higher trophic levels (protists). Specific bacterial and cercozoan taxa correlated with root genes involved in immune response. Our results indicate a central role of root caps in microbiome assembly with ripple-on effects affecting higher trophic levels and microbiome composition on older root zones.


Asunto(s)
Microbiota , Microbiología del Suelo , Rizosfera , Raíces de Plantas/microbiología , Bacterias , Zea mays/genética
10.
Proc Natl Acad Sci U S A ; 117(45): 28140-28149, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33093203

RESUMEN

Land-use intensification can increase provisioning ecosystem services, such as food and timber production, but it also drives changes in ecosystem functioning and biodiversity loss, which may ultimately compromise human wellbeing. To understand how changes in land-use intensity affect the relationships between biodiversity, ecosystem functions, and services, we built networks from correlations between the species richness of 16 trophic groups, 10 ecosystem functions, and 15 ecosystem services. We evaluated how the properties of these networks varied across land-use intensity gradients for 150 forests and 150 grasslands. Land-use intensity significantly affected network structure in both habitats. Changes in connectance were larger in forests, while changes in modularity and evenness were more evident in grasslands. Our results show that increasing land-use intensity leads to more homogeneous networks with less integration within modules in both habitats, driven by the belowground compartment in grasslands, while forest responses to land management were more complex. Land-use intensity strongly altered hub identity and module composition in both habitats, showing that the positive correlations of provisioning services with biodiversity and ecosystem functions found at low land-use intensity levels, decline at higher intensity levels. Our approach provides a comprehensive view of the relationships between multiple components of biodiversity, ecosystem functions, and ecosystem services and how they respond to land use. This can be used to identify overall changes in the ecosystem, to derive mechanistic hypotheses, and it can be readily applied to further global change drivers.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Modelos Biológicos , Bosques , Pradera
11.
Environ Microbiol ; 24(11): 5498-5508, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35837871

RESUMEN

Protists are abundant, diverse and perform essential functions in soils. Protistan community structure and its change across time or space are traditionally studied at the species level but the relative importance of the processes shaping these patterns depends on the taxon phylogenetic resolution. Using 18S rDNA amplicon data of the Cercozoa, a group of dominant soil protists, from an agricultural field in western Germany, we observed a turnover of relatively closely related taxa (from sequence variants to genus-level clades) across soil depth; while across soil habitats (rhizosphere, bulk soil, drilosphere), we observed turnover of relatively distantly related taxa, confirming Paracercomonadidae as a rhizosphere-associated clade. We extended our approach to show that closely related Cercozoa encounter divergent arbuscular mycorrhizal (AM) fungi across soil depth and that distantly related Cercozoa encounter closely related AM fungi across soil compartments. This study suggests that soil Cercozoa community assembly at the field scale is driven by niche-based processes shaped by evolutionary legacy of adaptation to conditions primarily related to the soil compartment, followed by the soil layer, giving a deeper understanding on the selection pressures that shaped their evolution.


Asunto(s)
Cercozoos , Micorrizas , Suelo/química , Filogenia , Microbiología del Suelo , Rizosfera , Micorrizas/genética
12.
Syst Biol ; 69(6): 1231-1253, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32298457

RESUMEN

Natural history collections are leading successful large-scale projects of specimen digitization (images, metadata, DNA barcodes), thereby transforming taxonomy into a big data science. Yet, little effort has been directed towards safeguarding and subsequently mobilizing the considerable amount of original data generated during the process of naming 15,000-20,000 species every year. From the perspective of alpha-taxonomists, we provide a review of the properties and diversity of taxonomic data, assess their volume and use, and establish criteria for optimizing data repositories. We surveyed 4113 alpha-taxonomic studies in representative journals for 2002, 2010, and 2018, and found an increasing yet comparatively limited use of molecular data in species diagnosis and description. In 2018, of the 2661 papers published in specialized taxonomic journals, molecular data were widely used in mycology (94%), regularly in vertebrates (53%), but rarely in botany (15%) and entomology (10%). Images play an important role in taxonomic research on all taxa, with photographs used in >80% and drawings in 58% of the surveyed papers. The use of omics (high-throughput) approaches or 3D documentation is still rare. Improved archiving strategies for metabarcoding consensus reads, genome and transcriptome assemblies, and chemical and metabolomic data could help to mobilize the wealth of high-throughput data for alpha-taxonomy. Because long-term-ideally perpetual-data storage is of particular importance for taxonomy, energy footprint reduction via less storage-demanding formats is a priority if their information content suffices for the purpose of taxonomic studies. Whereas taxonomic assignments are quasifacts for most biological disciplines, they remain hypotheses pertaining to evolutionary relatedness of individuals for alpha-taxonomy. For this reason, an improved reuse of taxonomic data, including machine-learning-based species identification and delimitation pipelines, requires a cyberspecimen approach-linking data via unique specimen identifiers, and thereby making them findable, accessible, interoperable, and reusable for taxonomic research. This poses both qualitative challenges to adapt the existing infrastructure of data centers to a specimen-centered concept and quantitative challenges to host and connect an estimated $ \le $2 million images produced per year by alpha-taxonomic studies, plus many millions of images from digitization campaigns. Of the 30,000-40,000 taxonomists globally, many are thought to be nonprofessionals, and capturing the data for online storage and reuse therefore requires low-complexity submission workflows and cost-free repository use. Expert taxonomists are the main stakeholders able to identify and formalize the needs of the discipline; their expertise is needed to implement the envisioned virtual collections of cyberspecimens. [Big data; cyberspecimen; new species; omics; repositories; specimen identifier; taxonomy; taxonomic data.].


Asunto(s)
Clasificación , Bases de Datos Factuales/normas , Animales , Bases de Datos Factuales/tendencias
13.
J Eukaryot Microbiol ; 68(2): e12835, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33222324

RESUMEN

The majority of Euglyphida species are characterised by shells with imbricated silica scales. Environmental surveys indicate a large unexplored diversity and recent efforts hinted at a certain diversity of yet undescribed, inconspicuous, scale-lacking Euglyphida. Here we describe Phaeobola aeris gen. nov., sp. nov. that shows a variety of morphological characters typical for the Euglyphida but lacks silica scales-instead, this species bears an agglutinated test. Neither its morphology nor phylogenetic placement allows its assignment to any currently described family. We erected the yet monospecific genus Phaeobola gen. nov., which with yet available data remain Euglyphida incertae sedis.


Asunto(s)
Cercozoos , Rhizaria , Ursidae , Animales , Filogenia
14.
J Eukaryot Microbiol ; 67(2): 245-251, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31808200

RESUMEN

Thecofilosea is a class in Cercozoa (Rhizaria) comprising mainly freshwater-inhabiting algivores. Recently, numerous isolates of thecofilosean amoebae have been cultured and were characterized by an integrated morphological and molecular approach. As attempts to establish a culture of Lecythium mutabilis repeatedly failed, it was not yet investigated by molecular means. We isolated single cells of L. mutabilis directly from their habitat and successfully sequenced the V4 region of their SSU rDNA. Phylogenetic analyses showed that L. mutabilis is not directly related to the genus Lecythium and instead branches within the Fiscullidae (Tectofilosida, Thecofilosea). Accordingly, we transfer the species L. mutabilis to a novel genus Omnivora gen. nov.


Asunto(s)
Cercozoos/clasificación , Cercozoos/citología , Cercozoos/genética , ADN Protozoario/análisis , ADN Ribosómico/análisis , Filogenia
15.
J Eukaryot Microbiol ; 67(3): 327-336, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31904883

RESUMEN

Myxomycetes (also called Myxogastria or colloquially, slime molds) are worldwide occurring soil amoeboflagellates. Among Amoebozoa, they have the notable characteristic to form, during their life cycle, macroscopic fruiting bodies, that will ultimately release spores. Some 1,000 species have been described, based on the macroscopic and microscopic characteristics of their fruiting bodies. We were interested in Physarum pusillum (Berk. & M.A. Curtis) G. Lister, a very common species described with two variants, each bearing such morphological differences that they could represent two distinct species. In order to test this, we observed key characters in a large selection of specimens attributed to P.  pusillum, to its synonyms (in particular Physarum gravidum), and to related species. In addition, the small-subunit ribosomal RNA gene was obtained from seven of these specimens. Based on these data, we provide a comprehensive phylogeny of the order Physarida (Eukaryota: Amoebozoa: Conosa: Macromycetozoa: Fuscisporidia). Morphology and phylogeny together support the reinstatement of P. gravidum Morgan 1896 with a neotype here designated, distinct from P. pusillum, here redefined.


Asunto(s)
Physarum/clasificación , Physarum/fisiología , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Análisis de Secuencia de ADN/métodos , ADN Protozoario/genética , Microscopía Electrónica de Rastreo , Filogenia , Physarum/ultraestructura , Esporas Protozoarias/ultraestructura
16.
New Phytol ; 224(2): 886-901, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31074884

RESUMEN

In nature, beneficial and pathogenic fungi often simultaneously colonise plants. Despite substantial efforts to understand the composition of natural plant-microbe communities, the mechanisms driving such multipartite interactions remain largely unknown. Here we address how the interaction between the beneficial root endophyte Serendipita vermifera and the pathogen Bipolaris sorokiniana affects fungal behaviour and determines barley host responses using a gnotobiotic soil-based split-root system. Fungal confrontation in soil resulted in induction of B. sorokiniana genes involved in secondary metabolism and a significant repression of genes encoding putative effectors. In S. vermifera, genes encoding hydrolytic enzymes were strongly induced. This antagonistic response was not activated during the tripartite interaction in barley roots. Instead, we observed a specific induction of S. vermifera genes involved in detoxification and redox homeostasis. Pathogen infection but not endophyte colonisation resulted in substantial host transcriptional reprogramming and activation of defence. In the presence of S. vermifera, pathogen infection and disease symptoms were significantly reduced despite no marked alterations of the plant transcriptional response. The activation of stress response genes and concomitant repression of putative effector gene expression in B. sorokiniana during confrontation with the endophyte suggest a reduction of the pathogen's virulence potential before host plant infection.


Asunto(s)
Ascomicetos/fisiología , Basidiomycota/fisiología , Hordeum/microbiología , Raíces de Plantas/microbiología , Antibiosis , Regulación Fúngica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Microbiología del Suelo
17.
J Eukaryot Microbiol ; 66(3): 525-527, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30098099

RESUMEN

Thecofilosea is a class in Cercozoa comprising mainly freshwater inhabiting algivores. Since direct observation of amoeboid protists in soil is not possible, the prey spectra of their terrestrial relatives remain obscure. To test for grazing selectivity and the preferred prey of terrestrial thecofiloseans, we conducted a food choice experiment including yeasts and algae as prey. When being offered all food sources at once, the yeast cells were strongly reduced, whereas the abundance of the algae only slightly decreased. Since Fisculla terrestris thrives with fungal prey, it must be considered as a predator of eukaryotes with high preference for fungal cells.


Asunto(s)
Cercozoos/fisiología , Cadena Alimentaria , Hongos , Herbivoria
18.
J Eukaryot Microbiol ; 66(2): 232-243, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29945298

RESUMEN

A major drawback in testate amoeba research is a general lack of scientific studies combining molecular approaches and classical laboratory experiments. We isolated five yet uncultured testate amoebae of the genus Phryganella Penard, 1902 from three different rivers and one pond in Germany. Based on established cultures we show their morphology, which we studied by light and electron microscopy, and present their unique feeding mode on abundant and common pennate diatoms like Nitzschia spp. and Synedra spp., whose frustules are bent and frequently, but not always, broken during the feeding process. We further obtained the first SSU rDNA sequences of strains of the family Phryganellidae, all of which contain introns. We used the sequences to confirm the taxonomic placement of the Phryganellidae in the Arcellinida (Amoebozoa), branching as a sister group to the Cryptodifflugiidae.


Asunto(s)
Amebozoos/fisiología , Cadena Alimentaria , Amebozoos/genética , ADN Protozoario/análisis , ADN Ribosómico/análisis , Diatomeas , Conducta Alimentaria , Agua Dulce , Alemania , Rasgos de la Historia de Vida , Microscopía , Microscopía Electrónica de Rastreo
19.
Environ Microbiol ; 20(1): 30-43, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28967236

RESUMEN

Although protists occupy a vast range of habitats and are known to interact with plants among other things via disease suppression, competition or growth stimulation, their contributions to the 'phytobiome' are not well described. To contribute to a more comprehensive picture of the plant holobiont, we examined cercozoan and oomycete taxa living in association with the model plant Arabidopsis thaliana grown in two different soils. Soil, roots, leaves and wooden toothpicks were analysed before and after surface sterilization. Cercozoa were identified using 18S rRNA gene metabarcoding, whereas the Internal Transcribed Spacer 1 was used to determine oomycetes. Subsequent analyses revealed strong spatial structuring of protist communities between compartments, although oomycetes appeared more specialized than Cercozoa. With regards to oomycetes, only members of the Peronosporales and taxa belonging to the genus Globisporangium were identified as shared members of the A. thaliana microbiome. This also applied to cercozoan taxa belonging to the Glissomonadida and Cercomonadida. We identified a strong influence by edaphic factors on the rhizosphere, but not for the phyllosphere. Distinct differences of Cercozoa found preferably in wood or fresh plant material imply specific niche adaptations. Our results highlight the importance of micro-eukaryotes for the plant holobiont.


Asunto(s)
Arabidopsis/parasitología , Cercozoos/clasificación , Cercozoos/aislamiento & purificación , Oomicetos/clasificación , Oomicetos/aislamiento & purificación , Hojas de la Planta/parasitología , Raíces de Plantas/parasitología , Cercozoos/genética , ADN Intergénico/genética , Microbiota/fisiología , Oomicetos/genética , ARN Ribosómico 18S/genética , Rizosfera , Suelo/parasitología
20.
Glob Chang Biol ; 24(12): 5642-5654, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30239067

RESUMEN

Despite their importance, how plant communities and soil microorganisms interact to determine the capacity of ecosystems to provide multiple functions simultaneously (multifunctionality) under climate change is poorly known. We conducted a common garden experiment using grassland species to evaluate how plant functional structure and soil microbial (bacteria and protists) diversity and abundance regulate soil multifunctionality responses to joint changes in plant species richness (one, three and six species) and simulated climate change (3°C warming and 35% rainfall reduction). The effects of species richness and climate on soil multifunctionality were indirectly driven via changes in plant functional structure and their relationships with the abundance and diversity of soil bacteria and protists. More specifically, warming selected for the larger and most productive plant species, increasing the average size within communities and leading to reductions in functional plant diversity. These changes increased the total abundance of bacteria that, in turn, increased that of protists, ultimately promoting soil multifunctionality. Our work suggests that cascading effects between plant functional traits and the abundance of multitrophic soil organisms largely regulate the response of soil multifunctionality to simulated climate change, and ultimately provides novel experimental insights into the mechanisms underlying the effects of biodiversity and climate change on ecosystem functioning.


Asunto(s)
Cambio Climático , Fenómenos Fisiológicos de las Plantas , Microbiología del Suelo , Suelo , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Ecosistema , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA