RESUMEN
The RhoGEF TRIO is known to play a major role in neuronal development by controlling actin cytoskeleton remodeling, primarily through the activation of the RAC1 GTPase. Numerous de novo mutations in the TRIO gene have been identified in individuals with neurodevelopmental disorders (NDDs). We have previously established the first phenotype/genotype correlation in TRIO-associated diseases, with striking correlation between the clinical features of the individuals and the opposite modulation of RAC1 activity by TRIO variants targeting different domains. The mutations hyperactivating RAC1 are of particular interest, as they are recurrently found in patients and are associated with a severe form of NDD and macrocephaly, indicating their importance in the etiology of the disease. Yet, it remains unknown how these pathogenic TRIO variants disrupt TRIO activity at a molecular level and how they affect neurodevelopmental processes such as axon outgrowth or guidance. Here we report an additional cohort of individuals carrying a pathogenic TRIO variant that reinforces our initial phenotype/genotype correlation. More importantly, by performing conformation predictions coupled to biochemical validation, we propose a model whereby TRIO is inhibited by an intramolecular fold and NDD-associated variants relieve this inhibition, leading to RAC1 hyperactivation. Moreover, we show that in cultured primary neurons and in the zebrafish developmental model, these gain-of-function variants differentially affect axon outgrowth and branching in vitro and in vivo, as compared to loss-of-function TRIO variants. In summary, by combining clinical, molecular, cellular and in vivo data, we provide compelling new evidence for the pathogenicity of novel genetic variants targeting the TRIO gene in NDDs. We report a novel mechanism whereby the fine-tuned regulation of TRIO activity is critical for proper neuronal development and is disrupted by pathogenic mutations.
Asunto(s)
Orientación del Axón , Trastornos del Neurodesarrollo , Animales , Trastornos del Neurodesarrollo/genética , Neuronas , Factores de Intercambio de Guanina Nucleótido Rho , Pez Cebra , HumanosRESUMEN
The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Trastornos del Neurodesarrollo/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína de Unión al GTP rac1/metabolismo , Secuencia de Aminoácidos , Estudios de Cohortes , Femenino , Factores de Intercambio de Guanina Nucleótido/química , Células HEK293 , Humanos , Masculino , Fenotipo , Proteínas Serina-Treonina Quinasas/química , Homología de Secuencia de AminoácidoRESUMEN
Over the recent years, several methods have been experienced to repair injured peripheral nerves. Among investigated strategies, the use of natural or synthetic conduits was validated for clinical application. In this study, we assessed the therapeutic potential of vein guides, transplanted immediately or two weeks after a peroneal nerve injury and filled with olfactory ecto-mesenchymal stem cells (OEMSC). Rats were randomly allocated to five groups. A3 mm peroneal nerve loss was bridged, acutely or chronically, with a 1 cm long femoral vein and with/without OEMSCs. These four groups were compared to unoperated rats (Control group). OEMSCs were purified from male olfactory mucosae and grafted into female hosts. Three months after surgery, nerve repair was analyzed by measuring locomotor function, mechanical muscle properties, muscle mass, axon number, and myelination. We observed that stem cells significantly (i) increased locomotor recovery, (ii) partially maintained the contractile phenotype of the target muscle, and (iii) augmented the number of growing axons. OEMSCs remained in the nerve and did not migrate in other organs. These results open the way for a phase I/IIa clinical trial based on the autologous engraftment of OEMSCs in patients with a nerve injury, especially those with neglected wounds.
Asunto(s)
Axones/metabolismo , Locomoción , Trasplante de Células Madre Mesenquimatosas , Regeneración Nerviosa , Mucosa Olfatoria/citología , Mucosa Olfatoria/trasplante , Nervio Peroneo/lesiones , Nervio Peroneo/metabolismo , Animales , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Vaina de Mielina/metabolismo , Tamaño de los Órganos , Traumatismos de los Nervios Periféricos/etiología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/terapia , Nervio Peroneo/fisiopatología , RatasRESUMEN
Traumatic spinal cord injuries (SCIs) often result in sensory, motor, and vegetative function loss below the injury site. Although preclinical results have been promising, significant solutions for SCI patients have not been achieved through translating repair strategies to clinical trials. In this study, we investigated the effective potential of mechanically activated lipoaspirated adipose tissue when transplanted into the epicenter of a thoracic spinal contusion. Male Sprague Dawley rats were divided into three experimental groups: SHAM (uninjured and untreated), NaCl (spinal cord contusion with NaCl application), and AF (spinal cord contusion with transplanted activated human fat). Pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) were measured to assess endogenous inflammation levels 14 days after injury. Sensorimotor recovery was monitored weekly for 12 weeks, and gait and electrophysiological analyses were performed at the end of this observational period. The results indicated that AF reduced endogenous inflammation post-SCI and there was a significant improvement in sensorimotor recovery. Moreover, activated adipose tissue also reinstated the segmental sensorimotor loop and the communication between supra- and sub-lesional spinal cord regions. This investigation highlights the efficacy of activated adipose tissue grafting in acute SCI, suggesting it is a promising therapeutic approach for spinal cord repair after traumatic contusion in humans.
Asunto(s)
Contusiones , Traumatismos de la Médula Espinal , Humanos , Ratas , Masculino , Animales , Cloruro de Sodio , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/terapia , Tejido Adiposo , Contusiones/terapia , InflamaciónRESUMEN
BACKGROUND: Spinal cord injuries (SCI) lead to functional alteration with important consequences such as motor and sensory disorders. The repair strategies developed to date remain ineffective. The adipose tissue-derived stromal vascular fraction (SVF) is composed of a cocktail of cells with trophic, pro-angiogenic and immunomodulatory effects. Numerous therapeutic benefits were shown for tissue reconstitution, peripheral neuropathy and for the improvement of neurodegenerative diseases. Here, the therapeutic efficacy of SVF on sensorimotor recovery after an acute thoracic spinal cord contusion in adult rats was determined. METHOD: Male Sprague Dawley rats (n = 45) were divided into 3 groups: SHAM (without SCI and treatment), NaCl (animals with a spinal lesion and receiving a saline injection through the dura mater) and SVF (animals with a spinal lesion and receiving a fraction of fat removed from adipocytes through the dura mater). Some animals were sacrificed 14 days after the start of the experiment to determine the inflammatory reaction by measuring the interleukin-1ß, interleukin-6 and Tumor Necrosis Factor-α in the lesion area. Other animals were followed once a week for 12 weeks to assess functional recovery (postural and locomotor activities, sensorimotor coordination). At the end of this period, spinal reflexivity (rate-dependent depression of the H-reflex) and physiological adjustments (ventilatory response to metabosensitive muscle activation following muscle fatigue) were measured with electrophysiological tools. RESULTS: Compared to non-treated animals, results indicated that the SVF reduced the endogenous inflammation and increased the behavioral recovery in treated animals. Moreover, H-reflex depression and ventilatory adjustments to muscle fatigue were found to be comparable between SHAM and SVF groups. CONCLUSION: Our results highlight the effectiveness of SVF and its high therapeutic potential to improve sensorimotor functions and to restore the segmental sensorimotor loop and the communication between supra- and sub-lesional spinal cord regions after traumatic contusion.
Asunto(s)
Traumatismos de la Médula Espinal , Fracción Vascular Estromal , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Autoinjertos , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , Tejido Adiposo , Recuperación de la FunciónRESUMEN
Background: Olfactory ecto-mesenchymal stem cells (OE-MSC) are mesenchymal stem cells derived from the lamina propria of the nasal mucosa. They display neurogenic and immunomodulatory properties and were shown to induce recovery in animal models of spinal cord trauma, hearing loss, Parkinsons's disease, amnesia, and peripheral nerve injury. As a step toward clinical practice, we sought to (i) devise a culture protocol that meets the requirements set by human health agencies and (ii) assess the efficacy of stem cells on neuron differentiation. Methods: Nasal olfactory mucosa biopsies from three donors were used to design and validate the good manufacturing process for purifying stem cells. All processes and procedures were performed by expert staff from the cell therapy laboratory of the public hospital of Marseille (AP-HM), according to aseptic handling manipulations. Premises, materials and air were kept clean at all times to avoid cross-contamination, accidents, or even fatalities. Purified stem cells were cultivated for 24 or 48 h and conditioned media were collected before being added to the culture medium of the neuroblastoma cell line Neuro2a. Results: Compared to the explant culture-based protocol, enzymatic digestion provides higher cell numbers more rapidly and is less prone to contamination. The use of platelet lysate in place of fetal calf serum is effective in promoting higher cell proliferation (the percentage of CFU-F progenitors is 15.5%), with the optimal percentage of platelet lysate being 10%. Cultured OE-MSCs do not show chromosomal rearrangement and, as expected, express the usual phenotypic markers of mesenchymal stem cells. When incorporated in standard culture medium, the conditioned medium of purified OE-MSCs promotes cell differentiation of Neuro2a neuroblastoma cells. Conclusion: We developed a safer and more efficient manufacturing process for clinical grade olfactory stem cells. With this protocol, human OE-MSCs will soon be used in a Phase I clinical based on their autologous transplantation in digital nerves with a neglected injury. However, further studies are required to unveil the underlying mechanisms of action.
RESUMEN
Spinal cord injury is a main health issue, leading to multiple functional deficits with major consequences such as motor and sensitive impairment below the lesion. To date, all repair strategies remain ineffective. In line with the experiments showing that implanted hydrogels, immunologically inert biomaterials, from natural or synthetic origins, are promising tools and in order to reduce functional deficits, to increase locomotor recovery, and to reduce spasticity, we injected into the lesion area, 1 week after a severe T10 spinal cord contusion, a thermoresponsive physically cross-linked poly(N-isopropylacrylamide)-poly(ethylene glycol) copolymer hydrogel. The effect of postinjury intensive rehabilitation training was also studied. A group of male Sprague-Dawley rats receiving the hydrogel was enrolled in an 8 week program of physical activity (15 min/day, 5 days/week) in order to verify if the combination of a treadmill step-training and hydrogel could lead to better outcomes. The data obtained were compared to those obtained in animals with a spinal lesion alone receiving a saline injection with or without performing the same program of physical activity. Furthermore, in order to verify the biocompatibility of our designed biomaterial, an inflammatory reaction (interleukin-1ß, interleukin-6, and tumor necrosis factor-α) was examined 15 days post-hydrogel injection. Functional recovery (postural and locomotor activities and sensorimotor coordination) was assessed from the day of injection, once a week, for 9 weeks. Finally, 9 weeks postinjection, the spinal reflexivity (rate-dependent depression of the H-reflex) was measured. The results indicate that the hydrogel did not induce an additional inflammation. Furthermore, we observed the same significant locomotor improvements in hydrogel-injected animals as in trained saline-injected animals. However, the combination of hydrogel with exercise did not show higher recovery compared to that evaluated by the two strategies independently. Finally, the H-reflex depression recovery was found to be induced by the hydrogel and, albeit to a lesser degree, exercise. However, no recovery was observed when the two strategies were combined. Our results highlight the effectiveness of our copolymer and its high therapeutic potential to preserve/repair the spinal cord after lesion.
RESUMEN
In line with experiments showing that implanted hydrogels are promising tools, we designed and injected, after a C2 spinal cord hemisection, a thermoresponsive and thermoreversible physically cross-linked poly(N-isopropylacrylamide)-poly(ethylene glycol) copolymer in order to reduce functional deficits and provide a favorable environment to axotomized axons. Nasal olfactory ecto-mesenchymal stem cells were cultured on the hydrogel in order to verify its biocompatibility. Then, inflammatory reaction (Interleukin-1ß and 6, Tumor Necrosis Factor-α) was examined 15 days post-hydrogel injection. Functional recovery (postural and locomotor activities, muscle strength and tactile sensitivity) was assessed once a week, during 12 weeks. Finally, at 12 weeks post-injection, spinal reflexivity and ventilatory adjustments were measured, and the presence of glial cells and regenerated axons were determined in the injured area. Our results indicate that cells survived and proliferated on the hydrogel which, itself, did not induce an enhanced inflammation. Furthermore, we observed significant motor and sensitive improvements in hydrogel-injected animals. Hydrogel also induced H-reflex recovery close to control animals but no improved ventilatory adjustment to electrically-evoked isometric contractions. Finally, regrowing axons were visualized within the hydrogel with no glial cells colonization. Our results emphasize the effectiveness of our copolymer and its high therapeutic potential to repair the spinal cord after injury.