Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 146: 105539, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072090

RESUMEN

Nutrients serve physiological functions in a dose-dependent manner and that needs to be recognized in risk assessment. An example of the consequences of not properly considering this can be seen in a recent assessment by the European Food Safety Authority (EFSA). EFSA concluded in 2022 that the intake of added and free sugars should be "as low as possible in the context of a nutritionally adequate diet". That conclusion of EFSA is based on the effects on two surrogate endpoints for an adverse effect found in randomized controlled trials with high sugars intake levels: fasting glucose and fasting triglycerides. The lowest intake levels in these trials were around 10 energy% and at this intake level there were no adverse effects on the two outcomes. This indicates that the adverse effects of sugars have an observable threshold value for these two endpoints. The most appropriate interpretation from the vast amount of data is that currently no definitive conclusion can be drawn on the tolerable upper intake level for dietary sugars. Therefore, EFSA's own guidance would lead to the conclusion that the available data do not allow the setting of an upper limit for added sugars and hence, that more robust data are required to identify the threshold value for intake of sugars.


Asunto(s)
Dieta , Nutrientes , Inocuidad de los Alimentos , Medición de Riesgo , Azúcares
2.
Regul Toxicol Pharmacol ; 151: 105652, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38839030

RESUMEN

BACKGROUND: Few methods are available for transparently combining different evidence streams for chemical risk assessment to reach an integrated conclusion on the probability of causation. Hence, the UK Committees on Toxicity (COT) and on Carcinogenicity (COC) have reviewed current practice and developed guidance on how to achieve this in a transparent manner, using graphical visualisation. METHODS/APPROACH: All lines of evidence, including toxicological, epidemiological, new approach methodologies, and mode of action should be considered, taking account of their strengths/weaknesses in their relative weighting towards a conclusion on the probability of causation. A qualitative estimate of the probability of causation is plotted for each line of evidence and a combined estimate provided. DISCUSSION/CONCLUSIONS: Guidance is provided on integration of multiple lines of evidence for causation, based on current best practice. Qualitative estimates of probability for each line of evidence are plotted graphically. This ensures a deliberative, consensus conclusion on likelihood of causation is reached. It also ensures clear communication of the influence of the different lines of evidence on the overall conclusion on causality. Issues on which advice from the respective Committees is sought varies considerably, hence the guidance is designed to be sufficiently flexible to meet this need.

3.
Arch Toxicol ; 96(9): 2419-2428, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35701604

RESUMEN

Concern over substances that may cause cancer has led to various classification schemes to recognize carcinogenic threats and provide a basis to manage those threats. The least useful schemes have a binary choice that declares a substance carcinogenic or not. This overly simplistic approach ignores the complexity of cancer causation by considering neither how the substance causes cancer, nor the potency of that mode of action. Consequently, substances are classified simply as "carcinogenic", compromising the opportunity to properly manage these kinds of substances. It will likely be very difficult, if not impossible, to incorporate New Approach Methodologies (NAMs) into binary schemes. In this paper we propose a new approach cancer classification scheme that segregates substances by both mode of action and potency into three categories and, as a consequence, provides useful guidance in the regulation and management of substances with carcinogenic potential. Examples are given, including aflatoxin (category A), trichlorethylene (category B), and titanium dioxide (category C), which demonstrate the clear differentiation among these substances that generate appropriate levels of concern and management options.


Asunto(s)
Carcinógenos , Neoplasias , Carcinógenos/toxicidad , Humanos , Neoplasias/inducido químicamente , Medición de Riesgo
4.
Chem Res Toxicol ; 34(2): 300-312, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33253545

RESUMEN

The intention of this study was to determine the utility of high-throughput screening (HTS) data, as exemplified by ToxCast and Tox21, for application in toxicological read-across in food-relevant chemicals. Key questions were addressed on the extent to which the HTS data could provide information enabling (1) the elucidation of underlying bioactivities associated with apical toxicological outcomes, (2) the closing of existing toxicological data gaps, and (3) the definition of the boundaries of chemical space across which bioactivity could reliably be extrapolated. Results revealed that many biological targets apparently activated within the chemical groupings lack, at this time, validated toxicity pathway associations. Therefore, as means of providing proof-of-principle, a comparatively well-characterized end point-estrogenicity-was selected for evaluation. This was facilitated through the preparation of two exploratory case studies, focusing upon groupings of paraben-gallates and pyranone-type compounds (notably flavonoids). Within both, the HTS data were seen to reflect estrogenic potencies in a manner which broadly corresponded to established structure-activity group relationships, with parabens and flavonoids displaying greater estrogen receptor affinity than benzoate esters and alternative pyranone-containing molecules, respectively. As such, utility in the identification of out-of-domain compounds was demonstrated, indicating potential for application in addressing point (3) as detailed above.


Asunto(s)
Flavonoides/efectos adversos , Ensayos Analíticos de Alto Rendimiento , Piranos/efectos adversos , Pruebas de Toxicidad , Humanos , Estructura Molecular , Medición de Riesgo , Relación Estructura-Actividad
5.
Arch Toxicol ; 95(11): 3611-3621, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34559250

RESUMEN

The long running controversy about the relative merits of hazard-based versus risk-based approaches has been investigated. There are three levels of hazard codification: level 1 divides chemicals into dichotomous bands of hazardous and non-hazardous; level 2 divides chemicals into bands of hazard based on severity and/or potency; and level 3 places each chemical on a continuum of hazard based on severity and/or potency. Any system which imposes compartments onto a continuum will give rise to issues at the boundaries, especially with only two compartments. Level 1 schemes are only justifiable if there is no variation in severity, or potency or if there is no threshold. This is the assumption implicit in GHS/EU classification for carcinogenicity, reproductive toxicity and mutagenicity. However, this assumption has been challenged. Codification level 2 hazard assessments offer a range of choices and reduce the built-in conflict inherent in the level 1 process. Level 3 assessments allow a full range of choices between the extremes and reduce the built-in conflict even more. The underlying reason for the controversy between hazard and risk is the use of level 1 hazard codification schemes in situations where there are ranges of severity and potency which require the use of level 2 or level 3 hazard codification. There is not a major difference between level 2 and level 3 codification, and they can both be used to select appropriate risk management options. Existing level 1 codification schemes should be reviewed and developed into level 2 schemes where appropriate.


Asunto(s)
Sustancias Peligrosas/clasificación , Medición de Riesgo/métodos , Carcinogénesis , Unión Europea , Humanos , Mutagénesis , Reproducción/efectos de los fármacos , Medición de Riesgo/legislación & jurisprudencia , Gestión de Riesgos/métodos
6.
Arch Toxicol ; 95(9): 3133-3136, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34363510

RESUMEN

The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved. A continuous process of improvement in consumer protection is clearly desirable but any initiative directed towards this objective must be based on scientific knowledge. It must not confound risk with other factors in determining policy. This conclusion is fully supported in the present Commentary including the request to improve both, data collection and the time-consuming and bureaucratic procedures that delay the publication of regulations.


Asunto(s)
Salud Pública/legislación & jurisprudencia , Medición de Riesgo/legislación & jurisprudencia , Unión Europea , Sustancias Peligrosas/toxicidad , Política de Salud/legislación & jurisprudencia , Humanos
7.
Regul Toxicol Pharmacol ; 127: 105070, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34718074

RESUMEN

Top dose selection for repeated dose animal studies has generally focused on identification of apical endpoints, use of the limit dose, or determination of a maximum tolerated dose (MTD). The intent is to optimize the ability of toxicity tests performed in a small number of animals to detect effects for hazard identification. An alternative approach, the kinetically derived maximum dose (KMD), has been proposed as a mechanism to integrate toxicokinetic (TK) data into the dose selection process. The approach refers to the dose above which the systemic exposures depart from being proportional to external doses. This non-linear external-internal dose relationship arises from saturation or limitation of TK process(es), such as absorption or metabolism. The importance of TK information is widely acknowledged when assessing human health risks arising from exposures to environmental chemicals, as TK determines the amount of chemical at potential sites of toxicological responses. However, there have been differing opinions and interpretations within the scientific and regulatory communities related to the validity and application of the KMD concept. A multi-stakeholder working group, led by the Health and Environmental Sciences Institute (HESI), was formed to provide an opportunity for impacted stakeholders to address commonly raised scientific and technical issues related to this topic and, more specifically, a weight of evidence approach is recommended to inform design and dose selection for repeated dose animal studies. Commonly raised challenges related to the use of TK data for dose selection are discussed, recommendations are provided, and illustrative case examples are provided to address these challenges or refute misconceptions.


Asunto(s)
Relación Dosis-Respuesta a Droga , Pruebas de Toxicidad/métodos , Toxicocinética , Animales , Pruebas de Carcinogenicidad/métodos , Pruebas de Carcinogenicidad/normas , Dosis Máxima Tolerada , Medición de Riesgo , Pruebas de Toxicidad/normas
8.
Crit Rev Toxicol ; 50(1): 72-95, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32133908

RESUMEN

The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) organized a workshop "Hazard Identification, Classification and Risk Assessment of Carcinogens: Too Much or Too Little?" to explore the scientific limitations of the current binary carcinogenicity classification scheme that classifies substances as either carcinogenic or not. Classification is often based upon the rodent 2-year bioassay, which has scientific limitations and is not necessary to predict whether substances are likely human carcinogens. By contrast, tiered testing strategies founded on new approach methodologies (NAMs) followed by subchronic toxicity testing, as necessary, are useful to determine if a substance is likely carcinogenic, by which mode-of-action effects would occur and, for non-genotoxic carcinogens, the dose levels below which the key events leading to carcinogenicity are not affected. Importantly, the objective is not for NAMs to mimic high-dose effects recorded in vivo, as these are not relevant to human risk assessment. Carcinogenicity testing at the "maximum tolerated dose" does not reflect human exposure conditions, but causes major disturbances of homeostasis, which are very unlikely to occur at relevant human exposure levels. The evaluation of findings should consider biological relevance and not just statistical significance. Using this approach, safe exposures to non-genotoxic substances can be established.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Carcinógenos/toxicidad , Carcinógenos/clasificación , Ecotoxicología , Humanos , Medición de Riesgo/métodos
9.
Arch Toxicol ; 94(3): 959-966, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32065296

RESUMEN

In the last decade, adverse outcome pathways have been introduced in the fields of toxicology and risk assessment of chemicals as pragmatic tools with broad application potential. While their use in the pharmaceutical and cosmetics sectors has been well documented, their application in the food area remains largely unexplored. In this respect, an expert group of the International Life Sciences Institute Europe has recently explored the use of adverse outcome pathways in the safety evaluation of food additives. A key activity was the organization of a workshop, gathering delegates from the regulatory, industrial and academic areas, to discuss the potentials and challenges related to the application of adverse outcome pathways in the safety assessment of food additives. The present paper describes the outcome of this workshop followed by a number of critical considerations and perspectives defined by the International Life Sciences Institute Europe expert group.


Asunto(s)
Rutas de Resultados Adversos , Aditivos Alimentarios , Inocuidad de los Alimentos , Pruebas de Toxicidad/métodos , Animales , Cosméticos , Europa (Continente) , Alimentos , Humanos , Medición de Riesgo
10.
Arch Toxicol ; 94(7): 2549-2557, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32514609

RESUMEN

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Asunto(s)
Exposición Dietética/efectos adversos , Disruptores Endocrinos/efectos adversos , Sistema Endocrino/efectos de los fármacos , Fitoquímicos/efectos adversos , Pruebas de Toxicidad , Animales , Disruptores Endocrinos/síntesis química , Sistema Endocrino/metabolismo , Sistema Endocrino/fisiopatología , Humanos , Ligandos , Medición de Riesgo
11.
J Toxicol Environ Health A ; 83(13-14): 485-494, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32552445

RESUMEN

Theoretically, both synthetic endocrine-disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine-disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower than S-EDCs. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea, and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Asunto(s)
Disruptores Endocrinos/síntesis química , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/análisis , Disruptores Endocrinos/metabolismo , Sistema Endocrino/efectos de los fármacos , Sistema Endocrino/fisiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Retroalimentación Fisiológica/efectos de los fármacos , Hormonas/metabolismo , Humanos , Unión Proteica , Receptores de Superficie Celular/metabolismo , Medición de Riesgo , Pruebas de Toxicidad/normas
12.
Regul Toxicol Pharmacol ; 112: 104592, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32017962

RESUMEN

The need to develop new tools and increase capacity to test pharmaceuticals and other chemicals for potential adverse impacts on human health and the environment is an active area of development. Much of this activity was sparked by two reports from the US National Research Council (NRC) of the National Academies of Sciences, Toxicity Testing in the Twenty-first Century: A Vision and a Strategy (2007) and Science and Decisions: Advancing Risk Assessment (2009), both of which advocated for "science-informed decision-making" in the field of human health risk assessment. The response to these challenges for a "paradigm shift" toward using new approach methodologies (NAMS) for safety assessment has resulted in an explosion of initiatives by numerous organizations, but, for the most part, these have been carried out independently and are not coordinated in any meaningful way. To help remedy this situation, a framework that presents a consistent set of criteria, universal across initiatives, to evaluate a NAM's fit-for-purpose was developed by a multi-stakeholder group of industry, academic, and regulatory experts. The goal of this framework is to support greater consistency across existing and future initiatives by providing a structure to collect relevant information to build confidence that will accelerate, facilitate and encourage development of new NAMs that can ultimately be used within the appropriate regulatory contexts. In addition, this framework provides a systematic approach to evaluate the currently-available NAMs and determine their suitability for potential regulatory application. This 3-step evaluation framework along with the demonstrated application with case studies, will help build confidence in the scientific understanding of these methods and their value for chemical assessment and regulatory decision-making.


Asunto(s)
Toma de Decisiones , Administración de la Seguridad , Humanos , Medición de Riesgo , Pruebas de Toxicidad
13.
Regul Toxicol Pharmacol ; 114: 104668, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32335207

RESUMEN

The European Partnership for Alternative Approaches to Animal Testing (EPAA) convened a 'Blue Sky Workshop' on new ideas for non-animal approaches to predict repeated-dose systemic toxicity. The aim of the Workshop was to formulate strategic ideas to improve and increase the applicability, implementation and acceptance of modern non-animal methods to determine systemic toxicity. The Workshop concluded that good progress is being made to assess repeated dose toxicity without animals taking advantage of existing knowledge in toxicology, thresholds of toxicological concern, adverse outcome pathways and read-across workflows. These approaches can be supported by New Approach Methodologies (NAMs) utilising modern molecular technologies and computational methods. Recommendations from the Workshop were based around the needs for better chemical safety assessment: how to strengthen the evidence base for decision making; to develop, standardise and harmonise NAMs for human toxicity; and the improvement in the applicability and acceptance of novel techniques. "Disruptive thinking" is required to reconsider chemical legislation, validation of NAMs and the opportunities to move away from reliance on animal tests. Case study practices and data sharing, ensuring reproducibility of NAMs, were viewed as crucial to the improvement of non-animal test approaches for systemic toxicity.


Asunto(s)
Alternativas a las Pruebas en Animales , Pruebas de Toxicidad , Rutas de Resultados Adversos , Animales , Seguridad Química , Relación Dosis-Respuesta a Droga , Humanos
14.
Crit Rev Toxicol ; 49(1): 1-10, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30919727

RESUMEN

Risk assessments for pesticide and veterinary drug residues in food are performed respectively by the Joint FAO/WHO Expert Meeting on Pesticide Residues (JMPR) and the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The models used by the two Committees to assess chronic dietary exposure are based on different data and assumptions which may be confusing, particularly for risk managers, when the same compound is used to treat plants and animals. This publication details the results of combined chronic dietary exposure assessments for eight compounds used both as pesticide and veterinary drugs. It compares the results from models in use by JMPR and JECFA with those from national estimates performed by 17 countries. Results show that the JECFA model is better reflecting less than lifetime dietary exposure by considering consumption of children and high consumers. The JMPR model is a suitable model for estimating average chronic (lifetime) exposure to residues present in widely and regularly consumed staple commodities. However, it is suitable neither for estimating children's exposure nor more generally for assessing less than lifetime dietary exposure. In order to select the appropriate exposure model related to the occurrence of adverse effects i.e. effects occurring over less-than-lifetime or effects occurring only over lifetime, this paper proposes criteria to match the toxicological profile of the compound and the appropriate exposure scenarios. These approaches will continue to be harmonized to ensure the most scientifically sound basis for the risk assessment for pesticides and veterinary drug residues and consequently for other chemicals in food.


Asunto(s)
Exposición Dietética/estadística & datos numéricos , Contaminantes Ambientales/análisis , Residuos de Plaguicidas , Drogas Veterinarias , Contaminación de Alimentos/estadística & datos numéricos , Humanos , Medición de Riesgo
15.
Arch Toxicol ; 93(8): 2115-2125, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31256212

RESUMEN

There is considerable interest in adverse outcome pathways (AOPs) as a means of organizing biological and toxicological information to assist in data interpretation and method development. While several chemical sectors have shown considerable progress in applying this approach, this has not been the case in the food sector. In the present study, safety evaluation reports of food additives listed in Annex II of Regulation (EC) No 1333/2008 of the European Union were screened to qualitatively and quantitatively characterize toxicity induced in laboratory animals. The resulting database was used to identify the critical adverse effects used for risk assessment and to investigate whether food additives share common AOPs. Analysis of the database revealed that often such scrutiny of AOPs was not possible or necessary. For 69% of the food additives, the report did not document any adverse effects in studies based on which the safety evaluation was performed. For the remaining 31% of the 326 investigated food additives, critical adverse effects and related points of departure for establishing health-based guidance values could be identified. These mainly involved effects on the liver, kidney, cardiovascular system, lymphatic system, central nervous system and reproductive system. AOPs are available for many of these apical endpoints, albeit to different degrees of maturity. For other adverse outcomes pertinent to food additives, including gastrointestinal irritation and corrosion, AOPs are lacking. Efforts should focus on developing AOPs for these particular endpoints.


Asunto(s)
Aditivos Alimentarios/efectos adversos , Inocuidad de los Alimentos , Humanos , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Nivel sin Efectos Adversos Observados , Medición de Riesgo
16.
Regul Toxicol Pharmacol ; 103: 124-129, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30660801

RESUMEN

Developments in the understanding of the etiology of cancer have undermined the 1970s concept that chemicals are either "carcinogens" or "non-carcinogens". The capacity to induce cancer should not be classified in an inflexible binary manner as present (carcinogen) or absent (non-carcinogen). Chemicals may induce cancer by three categories of mode of action: direct interaction with DNA or DNA replication including DNA repair and epigenetics; receptor-mediated induction of cell division; and non-specific induction of cell division. The long-term rodent bioassay is neither appropriate nor efficient to evaluate carcinogenic potential for humans and to inform risk management decisions. It is of questionable predicitiveness, expensive, time consuming, and uses hundreds of animals. Although it has been embedded in practice for over 50 years, it has only been used to evaluate less than 5% of chemicals that are in use. Furthermore, it is not reproducible because of the probabilisitic nature of the process it is evaluating combined with dose limiting toxicity, dose selection, and study design. The modes of action that lead to the induction of tumors are already considered under other hazardous property categories in classification (Mutagenicity/Genotoxicity and Target Organ Toxicity); a separate category for Carcinogenicity is not required and provides no additional public health protection.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinógenos/clasificación , Carcinógenos/farmacología , Animales , Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Humanos , Reproducibilidad de los Resultados
17.
Regul Toxicol Pharmacol ; 103: 86-92, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30634023

RESUMEN

Developments in the understanding of the etiology of cancer have profound implications for the way the carcinogenicity of chemicals is addressed. This paper proposes a unified theory of carcinogenesis that will illuminate better ways to evaluate and regulate chemicals. In the last four decades, we have come to understand that for a cell and a group of cells to begin the process of unrestrained growth that is defined as cancer, there must be changes in DNA that reprogram the cell from normal to abnormal. Cancer is the consequence of DNA coding errors that arise either directly from mutagenic events or indirectly from cell proliferation especially if sustained. Chemicals that act via direct interaction with DNA can induce cancer because they cause mutations which can be carried forward in dividing cells. Chemicals that act via non-genotoxic mechanisms must be dosed to maintain a proliferative environment so that the steps toward neoplasia have time to occur. Chemicals that induce increased cellular proliferation can be divided into two categories: those which act by a cellular receptor to induce cellular proliferation, and those which act via non-specific mechanisms such as cytotoxicity. This knowledge has implications for testing chemicals for carcinogenic potential and risk management.


Asunto(s)
Pruebas de Carcinogenicidad , Carcinógenos/química , Carcinógenos/farmacología , Neoplasias/inducido químicamente , Animales , ADN de Neoplasias/efectos de los fármacos , Humanos
18.
Regul Toxicol Pharmacol ; 103: 100-105, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30634021

RESUMEN

Over 50 years, we have learned a great deal about the biology that underpins cancer but our approach to testing chemicals for carcinogenic potential has not kept up. Only a small number of chemicals has been tested in animal-intensive, time consuming, and expensive long-term bioassays in rodents. We now recommend a transition from the bioassay to a decision-tree matrix that can be applied to a broader range of chemicals, with better predictivity, based on the premise that cancer is the consequence of DNA coding errors that arise either directly from mutagenic events or indirectly from sustained cell proliferation. The first step is in silico and in vitro assessment for mutagenic (DNA reactive) activity. If mutagenic, it is assumed to be carcinogenic unless evidence indicates otherwise. If the chemical does not show mutagenic potential, the next step is assessment of potential human exposure compared to the threshold for toxicological concern (TTC). If potential human exposure exceeds the TTC, then testing is done to look for effects associated with the key characteristics that are precursors to the carcinogenic process, such as increased cell proliferation, immunosuppression, or significant estrogenic activity. Protection of human health is achieved by limiting exposures to below NOEALs for these precursor effects. The decision tree matrix is animal-sparing, cost effective, and in step with our growing knowledge of the process of cancer formation.


Asunto(s)
Carcinogénesis/inducido químicamente , Pruebas de Carcinogenicidad , Carcinógenos/química , Humanos , Medición de Riesgo
19.
Crit Rev Toxicol ; 48(5): 387-415, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29516780

RESUMEN

Benchmark dose (BMD) modeling is now the state of the science for determining the point of departure for risk assessment. Key advantages include the fact that the modeling takes account of all of the data for a particular effect from a particular experiment, increased consistency, and better accounting for statistical uncertainties. Despite these strong advantages, disagreements remain as to several specific aspects of the modeling, including differences in the recommendations of the US Environmental Protection Agency (US EPA) and the European Food Safety Authority (EFSA). Differences exist in the choice of the benchmark response (BMR) for continuous data, the use of unrestricted models, and the mathematical models used; these can lead to differences in the final BMDL. It is important to take confidence in the model into account in choosing the BMDL, rather than simply choosing the lowest value. The field is moving in the direction of model averaging, which will avoid many of the challenges of choosing a single best model when the underlying biology does not suggest one, but additional research would be useful into methods of incorporating biological considerations into the weights used in the averaging. Additional research is also needed regarding the interplay between the BMR and the UF to ensure appropriate use for studies supporting a lower BMR than default values, such as for epidemiology data. Addressing these issues will aid in harmonizing methods and moving the field of risk assessment forward.


Asunto(s)
Biología Computacional/métodos , Relación Dosis-Respuesta a Droga , Modelos Biológicos , Medición de Riesgo , Animales , Benchmarking , Femenino , Humanos , Masculino
20.
Regul Toxicol Pharmacol ; 92: 1-7, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29113941

RESUMEN

The Toxicology Forum sponsored a workshop in October 2016, on the human relevance of rodent liver tumors occurring via nongenotoxic modes of action (MOAs). The workshop focused on two nuclear receptor-mediated MOAs (Constitutive Androstane Receptor (CAR) and Peroxisome Proliferator Activated Receptor-alpha (PPARα), and on cytotoxicity. The goal of the meeting was to review the state of the science to (1) identify areas of consensus and differences, data gaps and research needs; (2) identify reasons for inconsistencies in current regulatory positions; and (3) consider what data are needed to demonstrate a specific MOA, and when additional research is needed to rule out alternative possibilities. Implications for quantitative risk assessment approaches were discussed, as were implications of not considering MOA and dose in hazard characterization and labeling schemes. Most, but not all, participants considered the CAR and PPARα MOAs as not relevant to humans based on quantitative and qualitative differences. In contrast, cytotoxicity is clearly relevant to humans, but a threshold applies. Questions remain for all three MOAs concerning what data are necessary to determine the MOA and to what extent it is necessary to exclude other MOAs.


Asunto(s)
Neoplasias Hepáticas/patología , Animales , Receptor de Androstano Constitutivo , Humanos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/metabolismo , PPAR alfa/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Medición de Riesgo , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA