Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Intern Med ; 295(1): 2-19, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37926862

RESUMEN

The striking link of Cushing's syndrome with the metabolic syndrome (MetS) and cardiovascular disease (CVD) suggests that long-term exposure to extremely high cortisol levels catalyzes cardiometabolic deterioration. However, it remained unclear whether the findings from the extreme glucocorticoid overabundance observed in Cushing's syndrome could be translated into more subtle variations in long-term glucocorticoid levels among the general population, for example, due to chronic stress. Here, we performed a systematic review (PROSPERO: CRD42023425541) of evidence regarding the role of subtle variations in long-term biological stress, measured as levels of scalp hair cortisol (HairF) and cortisone (HairE), in the context of MetS and CVD in adults. We also performed a meta-analysis on the cross-sectional difference in HairF levels between individuals with versus without CVD. Seven studies were included regarding MetS, sixteen regarding CVD, and one regarding both. Most articles indicated a strong, consistent cross-sectional association of higher HairF and HairE levels with CVD, which was confirmed by our meta-analysis for HairF (eight studies, SMD = 0.48, 95% confidence intervals [CIs]: 0.16-0.79, p = 0.0095). Moreover, these relationships appear largely independent of standard risk factors. Age seems relevant as the effect seems stronger in younger individuals. Results regarding the associations of HairF and HairE with MetS were inconsistent. Altogether, long-term biological stress, measured as HairF and HairE, is associated with the presence of CVD, and less consistently with MetS. Prospective studies need to evaluate the directionality of this relationship and determine whether HairF and HairE can be used in addition to standard risk factors in predicting future cardiometabolic deterioration.


Asunto(s)
Enfermedades Cardiovasculares , Síndrome de Cushing , Síndrome Metabólico , Adulto , Humanos , Glucocorticoides , Hidrocortisona , Síndrome Metabólico/metabolismo , Estudios Prospectivos , Enfermedades Cardiovasculares/etiología , Estudios Transversales
2.
Exp Physiol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965822

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) agonists induce weight loss in patients with type 2 diabetes mellitus (T2DM), but the underlying mechanism is unclear. Recently, the mechanism by which metformin induces weight loss could be explained by an increase in growth differentiation factor 15 (GDF15), which suppresses appetite. Therefore, we aimed to investigate whether the GLP-1R agonist liraglutide modifies plasma GDF15 levels in patients with T2DM. GDF15 levels were measured in plasma samples obtained from Dutch Europids and Dutch South Asians with T2DM before and after 26 weeks of treatment with daily liraglutide (n = 44) or placebo (n = 50) added to standard care. At baseline, circulating GDF15 levels did not differ between South Asians and Europids with T2DM. Treatment with liraglutide, compared to placebo, decreased body weight, but did not modify plasma GDF15 levels in all patients, or when data were split by ethnicity. Also, the change in plasma GDF15 levels after treatment with liraglutide did not correlate with changes in body weight or HbA1c levels. In addition, the dose of metformin used did not correlate with baseline plasma GDF15 levels. Compared to placebo, liraglutide treatment for 26 weeks does not modify plasma GDF15 levels in Dutch Europid or South Asian patients with T2DM. Thus, the weight loss induced by liraglutide is likely explained by other mechanisms beyond the GDF15 pathway. HIGHLIGHTS: What is the central question of this study? Growth differentiation factor 15 (GDF15) suppresses appetite and is increased by metformin: does the GLP-1R agonist liraglutide modify plasma GDF15 levels in patients with type 2 diabetes mellitus (T2DM)? What is the main finding and its importance? Plasma GDF15 levels did not differ between South Asians and Europids with T2DM and were not modified by 26 weeks of liraglutide in either ethnicity. Moreover, there was no correlation between the changes in plasma GDF15 levels and dosage of metformin administered, changes in body weight or HbA1c levels. The appetite-suppressing effect of liraglutide is likely exerted via pathways other than GDF15.

3.
Int J Obes (Lond) ; 47(3): 236-243, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732416

RESUMEN

OBJECTIVES: Studies in mice have recently linked increased dietary choline consumption to increased incidence of obesity-related metabolic diseases, while several clinical trials have reported an anti-obesity effect of high dietary choline intake. Since the underlying mechanisms by which choline affects obesity are incompletely understood, the aim of the present study was to investigate the role of dietary choline supplementation in adiposity. METHODS: Female APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism and cardiometabolic diseases, were fed a Western-type diet supplemented with or without choline (1.2%, w/w) for up to 16 weeks. RESULTS: Dietary choline reduced body fat mass gain, prevented adipocyte enlargement, and attenuated adipose tissue inflammation. Besides, choline ameliorated liver steatosis and damage, associated with an upregulation of hepatic genes involved in fatty acid oxidation. Moreover, choline reduced plasma cholesterol, as explained by a reduction of plasma non-HDL cholesterol. Mechanistically, choline reduced hepatic VLDL-cholesterol secretion and enhanced the selective uptake of fatty acids from triglyceride-rich lipoprotein (TRL)-like particles by brown adipose tissue (BAT), consequently accelerating the clearance of the cholesterol-enriched TRL remnants by the liver. CONCLUSIONS: In APOE*3-Leiden.CETP mice, dietary choline reduces body fat by enhancing TRL-derived fatty acids by BAT, resulting in accelerated TRL turnover to improve hypercholesterolemia. These data provide a mechanistic basis for the observation in human intervention trials that high choline intake is linked with reduced body weight.


Asunto(s)
Tejido Adiposo Pardo , Colina , Ratones , Femenino , Humanos , Animales , Tejido Adiposo Pardo/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E3/farmacología , Colina/farmacología , Colina/metabolismo , Colesterol , Triglicéridos , Lipoproteínas/metabolismo , Lipoproteínas/farmacología , Hígado/metabolismo , Dieta , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/genética , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo
4.
Magn Reson Med ; 90(4): 1316-1327, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37183785

RESUMEN

PURPOSE: Activated brown adipose tissue (BAT) enhances lipid catabolism and improves cardiometabolic health. Quantitative MRI of the fat fraction (FF) of supraclavicular BAT (scBAT) is a promising noninvasive measure to assess BAT activity but suffers from high scan variability. We aimed to test the effects of coregistration and mutual thresholding on the scan variability in a fast (1 min) time-resolution MRI protocol for assessing scBAT FF changes during cold exposure. METHODS: Ten volunteers (age 24.8 ± 3.0 years; body mass index 21.2 ± 2.1 kg/m2 ) were scanned during thermoneutrality (32°C; 10 min) and mild cold exposure (18°C; 60 min) using a 12-point gradient-echo sequence (70 consecutive scans with breath-holds, 1.03 min per dynamic). Dynamics were coregistered to the first thermoneutral scan, which enabled drawing of single regions of interest in the scBAT depot. Voxel-wise FF changes were calculated at each time point and averaged across regions of interest. We applied mutual FF thresholding, in which voxels were included if their FF was greater than 30% FF in the reference scan and the registered dynamic. The efficacy of the coregistration was determined by using a moving average and comparing the mean squared error of residuals between registered and nonregistered data. Registered scBAT ΔFF was compared with single-scan thresholding using the moving average method. RESULTS: Registered scBAT ΔFF had lower mean square error values than nonregistered data (0.07 ± 0.05% vs. 0.16 ± 0.14%; p < 0.05), and mutual thresholding reduced the scBAT ΔFF variability by 30%. CONCLUSION: We demonstrate that coregistration and mutual thresholding improve stability of the data 2-fold, enabling assessment of small changes in FF following cold exposure.


Asunto(s)
Tejido Adiposo Pardo , Imagen por Resonancia Magnética , Humanos , Adulto Joven , Adulto , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Imagen por Resonancia Magnética/métodos
5.
Pharmacol Res ; 187: 106634, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574856

RESUMEN

Activation of brown adipose tissue (BAT) with the ß3-adrenergic receptor agonist CL316,243 protects mice from atherosclerosis development, and the presence of metabolically active BAT is associated with cardiometabolic health in humans. In contrast, exposure to cold or treatment with the clinically used ß3-adrenergic receptor agonist mirabegron to activate BAT exacerbates atherosclerosis in apolipoprotein E (ApoE)- and low-density lipoprotein receptor (LDLR)-deficient mice, both lacking a functional ApoE-LDLR pathway crucial for lipoprotein remnant clearance. We, therefore, investigated the effects of mirabegron treatment on dyslipidemia and atherosclerosis development in APOE*3-Leiden.CETP mice, a humanized lipoprotein metabolism model with a functional ApoE-LDLR clearance pathway. Mirabegron activated BAT and induced white adipose tissue (WAT) browning, accompanied by selectively increased fat oxidation and attenuated fat mass gain. Mirabegron increased the uptake of fatty acids derived from triglyceride (TG)-rich lipoproteins by BAT and WAT, which was coupled to increased hepatic uptake of the generated cholesterol-enriched core remnants. Mirabegron also promoted hepatic very low-density lipoprotein (VLDL) production, likely due to an increased flux of fatty acids from WAT to the liver, and resulted in transient elevation in plasma TG levels followed by a substantial decrease in plasma TGs. These effects led to a trend toward lower plasma cholesterol levels and reduced atherosclerosis. We conclude that BAT activation by mirabegron leads to substantial metabolic benefits in APOE*3-Leiden.CETP mice, and mirabegron treatment is certainly not atherogenic. These data underscore the importance of the choice of experimental models when investigating the effect of BAT activation on lipoprotein metabolism and atherosclerosis.


Asunto(s)
Tejido Adiposo Pardo , Aterosclerosis , Animales , Humanos , Ratones , Agonistas Adrenérgicos/metabolismo , Agonistas Adrenérgicos/farmacología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Lipoproteínas LDL/metabolismo , Hígado/metabolismo , Triglicéridos , Receptores de LDL/metabolismo
6.
J Therm Biol ; 107: 103259, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35701026

RESUMEN

OBJECTIVES: Although cold exposure is commonly believed to be causally related to acute viral respiratory infections, its effect on the immune system is largely unexplored. In this study, we determined transcript levels of a large panel of immune genes in blood before and after cold exposure. We included both Dutch Europid and Dutch South Asian men to address whether the immune system is differently regulated in the metabolically vulnerable South Asian population. METHODS: Fasted blood samples were obtained from nonobese Dutch Europid (n = 11; mean age 26 ± 3 y) and Dutch South Asian (n = 12; mean age 28 ± 3 y) men before and directly after short-term (∼2.5 h) mild cold exposure. Transcript levels of 144 immune genes were measured using a dual-color reverse transcriptase multiplex ligation-dependent probe amplification (dcRT-MLPA) assay. RESULTS: Cold exposure acutely upregulated mRNA levels of GNLY (+35%, P < 0.001) and PRF1 (+45%, P < 0.001), which encode cytotoxic proteins, and CCL4 (+8%, P < 0.01) and CCL5 (+5%, P < 0.05), both pro-inflammatory chemokines. At thermoneutrality, mRNA levels of four markers of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR)-family, involved in inflammasomes, were lower in Dutch South Asians compared to Dutch Europids, namely NLRP2 (-57%, P < 0.05), NLRP7 (-17%, P < 0.05), NLRP10 (-21%, P < 0.05), and NLRC4 (-23%, P < 0.05). CONCLUSIONS: Mild cold exposure acutely increases mRNA levels of genes involved in cytotoxicity of immune cells in blood. In addition, Dutch South Asians display lower circulating mRNA levels of inflammasome genes compared to Dutch Europids.


Asunto(s)
Pueblo Asiatico , Ayuno , Proteínas Adaptadoras Transductoras de Señales , Adulto , Pueblo Asiatico/genética , Humanos , Masculino , ARN Mensajero/genética , Adulto Joven
7.
J Med Syst ; 46(12): 89, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36319877

RESUMEN

Infrared thermography (IRT) is widely used to assess skin temperature in response to physiological changes. Yet, it remains challenging to standardize skin temperature measurements over repeated datasets. We developed an open-access semi-automated segmentation tool (the IRT-toolbox) for measuring skin temperatures in the thoracic area to estimate supraclavicular brown adipose tissue (scBAT) activity, and compared it to manual segmentations. The IRT-toolbox, designed in Python, consisted of image pre-alignment and non-rigid image registration. The toolbox was tested using datasets of 10 individuals (BMI = 22.1 ± 2.1 kg/m2, age = 22.0 ± 3.7 years) who underwent two cooling procedures, yielding four images per individual. Regions of interest (ROIs) were delineated by two raters in the scBAT and deltoid areas on baseline images. The toolbox enabled direct transfer of baseline ROIs to the registered follow-up images. For comparison, both raters also manually drew ROIs in all follow-up images. Spatial ROI overlap between methods and raters was determined using the Dice coefficient. Mean bias and 95% limits of agreement in mean skin temperature between methods and raters were assessed using Bland-Altman analyses. ROI delineation time was four times faster with the IRT-toolbox (01:04 min) than with manual delineations (04:12 min). In both anatomical areas, there was a large variability in ROI placement between methods. Yet, relatively small skin temperature differences were found between methods (scBAT: 0.10 °C, 95%LoA[-0.13 to 0.33 °C] and deltoid: 0.05 °C, 95%LoA[-0.46 to 0.55 °C]). The variability in skin temperature between raters was comparable between methods. The IRT-toolbox enables faster ROI delineations, while maintaining inter-user reliability compared to manual delineations. (Trial registration number (ClinicalTrials.gov): NCT04406922, [May 29, 2020]).


Asunto(s)
Tejido Adiposo Pardo , Temperatura Cutánea , Adolescente , Adulto , Humanos , Adulto Joven , Tejido Adiposo Pardo/fisiología , Reproducibilidad de los Resultados , Termografía/métodos , Tórax
8.
Diabetes Obes Metab ; 22(11): 2032-2044, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32558052

RESUMEN

AIM: To compare the effects of cold exposure and the ß3-adrenergic receptor agonist mirabegron on plasma lipids, energy expenditure and brown adipose tissue (BAT) activity in South Asians versus Europids. MATERIALS AND METHODS: Ten lean Dutch South Asian (aged 18-30 years; body mass index [BMI] 18-25 kg/m2 ) and 10 age- and BMI-matched Europid men participated in a randomized, double-blinded, cross-over study consisting of three interventions: short-term (~ 2 hours) cold exposure, mirabegron (200 mg one dose p.o.) and placebo. Before and after each intervention, we performed lipidomic analysis in serum, assessed resting energy expenditure (REE) and skin temperature, and measured BAT fat fraction by magnetic resonance imaging. RESULTS: In both ethnicities, cold exposure increased the levels of several serum lipid species, whereas mirabegron only increased free fatty acids. Cold exposure increased lipid oxidation in both ethnicities, while mirabegron increased lipid oxidation in Europids only. Cold exposure and mirabegron enhanced supraclavicular skin temperature in both ethnicities. Cold exposure decreased BAT fat fraction in both ethnicities. After the combination of data from both ethnicities, mirabegron decreased BAT fat fraction compared with placebo. CONCLUSIONS: In South Asians and Europids, cold exposure and mirabegron induced beneficial metabolic effects. When combining both ethnicities, cold exposure and mirabegron increased REE and lipid oxidation, coinciding with a higher supraclavicular skin temperature and lower BAT fat fraction.


Asunto(s)
Tejido Adiposo Pardo , Metabolismo Energético , Acetanilidas , Tejido Adiposo Pardo/metabolismo , Pueblo Asiatico , Frío , Estudios Cruzados , Humanos , Masculino , Termogénesis , Tiazoles
9.
Diabetologia ; 62(1): 112-122, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30377712

RESUMEN

AIMS/HYPOTHESIS: Individuals of South Asian origin are at increased risk of developing type 2 diabetes mellitus and associated comorbidities compared with Europids. Disturbances in energy metabolism may contribute to this increased risk. Skeletal muscle and possibly also brown adipose tissue (BAT) are involved in human energy metabolism and nitric oxide (NO) is suggested to play a pivotal role in regulating mitochondrial biogenesis in both tissues. We aimed to investigate the effects of 6 weeks of supplementation with L-arginine, a precursor of NO, on energy metabolism by BAT and skeletal muscle, as well as glucose metabolism in South Asian men compared with men of European descent. METHODS: We included ten Dutch South Asian men (age 46.5 ± 2.8 years, BMI 30.1 ± 1.1 kg/m2) and ten Dutch men of European descent, that were similar with respect to age and BMI, with prediabetes (fasting plasma glucose level 5.6-6.9 mmol/l or plasma glucose levels 2 h after an OGTT 7.8-11.1 mmol/l). Participants took either L-arginine (9 g/day) or placebo orally for 6 weeks in a randomised double-blind crossover study. Participants were eligible to participate in the study when they were aged between 40 and 55 years, had a BMI between 25 and 35 kg/m2 and did not have type 2 diabetes. Furthermore, ethnicity was defined as having four grandparents of South Asian or white European origin, respectively. Blinding of treatment was done by the pharmacy (Hankintatukku) and an independent researcher from Leiden University Medical Center randomly assigned treatments by providing a coded list. All people involved in the study as well as participants were blinded to group assignment. After each intervention, glucose tolerance was determined by OGTT and basal metabolic rate (BMR) was determined by indirect calorimetry; BAT activity was assessed by cold-induced [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography-computed tomography scanning. In addition, a fasting skeletal muscle biopsy was taken and analysed ex vivo for respiratory capacity using a multisubstrate protocol. The primary study endpoint was the effect of L-arginine on BAT volume and activity. RESULTS: L-Arginine did not affect BMR, [18F]FDG uptake by BAT or skeletal muscle respiration in either ethnicity. During OGTT, L-arginine lowered plasma glucose concentrations (AUC0-2 h - 9%, p < 0.01), insulin excursion (AUC0-2 h - 26%, p < 0.05) and peak insulin concentrations (-26%, p < 0.05) in Europid but not South Asian men. This coincided with enhanced cold-induced glucose oxidation (+44%, p < 0.05) in Europids only. Of note, in skeletal muscle biopsies several respiration states were consistently lower in South Asian men compared with Europid men. CONCLUSIONS/INTERPRETATION: L-Arginine supplementation does not affect BMR, [18F]FDG uptake by BAT, or skeletal muscle mitochondrial respiration in Europid and South Asian overweight and prediabetic men. However, L-arginine improves glucose tolerance in Europids but not in South Asians. Furthermore, South Asian men have lower skeletal muscle oxidative capacity than men of European descent. FUNDING: This study was funded by the EU FP7 project DIABAT, the Netherlands Organization for Scientific Research, the Dutch Diabetes Research Foundation and the Dutch Heart Foundation. TRIAL REGISTRATION: ClinicalTrials.gov NCT02291458.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Arginina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Adulto , Glucemia , Índice de Masa Corporal , Estudios Cruzados , Método Doble Ciego , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Estado Prediabético , Termogénesis/efectos de los fármacos
10.
Am J Physiol Endocrinol Metab ; 317(5): E820-E830, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31386566

RESUMEN

Brown adipose tissue (BAT) catabolizes glucose and fatty acids to produce heat and thereby contributes to energy expenditure. Long-term high-fat diet (HFD) feeding results in so-called 'whitening' of BAT characterized by increased lipid deposition, mitochondrial dysfunction, and reduced fat oxidation. The aim of the current study was to unravel the rate and related mechanisms by which HFD induces BAT whitening and insulin resistance. Wild-type mice were fed a HFD for 0, 1, 3, or 7 days. Within 1 day of HFD, BAT weight and lipid content were increased. HFD also immediately reduced insulin-stimulated glucose uptake by BAT, indicating rapid induction of insulin resistance. This was accompanied by a tendency toward a reduced uptake of triglyceride-derived fatty acids by BAT. Mitochondrial mass and Ucp1 expression were unaltered, whereas after 3 days of HFD, markers of mitochondrial dynamics suggested induction of a more fused mitochondrial network. Additionally, HFD also increased macrophage markers in BAT after 3 days of HFD. Counterintuitively, the switch to HFD was accompanied by an acute rise in core body temperature. We showed that a single day of HFD feeding is sufficient to induce the first signs of whitening and insulin resistance in BAT, which reduces the uptake of glucose and triglyceride-derived fatty acids. BAT whitening and insulin resistance are likely sustained by reduced mitochondrial oxidation due to changes in mitochondrial dynamics and macrophage infiltration, respectively. Likely, the switch to HFD swiftly induces thermogenesis in other metabolic organs, which allows attenuation of BAT thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Dieta Alta en Grasa , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , ADN Mitocondrial/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Insulina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Termogénesis/efectos de los fármacos , Termogénesis/genética , Triglicéridos/metabolismo , Proteína Desacopladora 1/metabolismo
11.
J Therm Biol ; 82: 178-185, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31128645

RESUMEN

Currently, 18 [F]-Fluorodeoxyglucose (18F-FDG) in combination with a positron emission tomography/computed tomography (PET/CT) scan analysis is the most commonly used method to quantify human BAT volume and activity. However, this technique presents several drawbacks which negatively affect participant's health. The aim of the present work is to determine whether supraclavicular skin temperature can be used as an indirect marker of cold-induced BAT and skeletal muscle 18F-FDG uptake in adults, while taking into account body composition. We performed a personalized cooling protocol just before an 18F-FDG-PET/CT scan, and we measured supraclavicular skin temperature before (in warm conditions) and after the cooling protocol in 88 adults (n = 57 women, mean age: 21.9 ±â€¯2.1 years old, body mass index: 24.5 ±â€¯4.3 km/m2). We found that supraclavicular skin temperature at the warm and cold periods was weakly and positively associated with BAT activity (SUVmean and SUVpeak: ß = 3.000; R2 = 0.072; P = 0.022 and ß = 2.448; R2 = 0.060; P = 0.021), but not with skeletal muscle 18F-FDG uptake, after controlling for body composition. We performed further analyses and the positive associations persisted only in the group of women. In conclusion, supraclavicular skin temperature in warm and cold conditions seems to be related with cold-induced 18F-FDG uptake by BAT only in women, although the low explained variance of these associations means that there are other factors involved in the supraclavicular skin temperature.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Temperatura Cutánea , Adulto , Composición Corporal , Frío , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Adulto Joven
12.
Diabetologia ; 61(11): 2386-2397, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30145664

RESUMEN

AIMS/HYPOTHESIS: The aim of this study was to evaluate the effect of sitagliptin on glucose tolerance, plasma lipids, energy expenditure and metabolism of brown adipose tissue (BAT), white adipose tissue (WAT) and skeletal muscle in overweight individuals with prediabetes (impaired glucose tolerance and/or impaired fasting glucose). METHODS: We performed a randomised, double-blinded, placebo-controlled trial in 30 overweight, Europid men (age 45.9 ± 6.2 years; BMI 28.8 ± 2.3 kg/m2) with prediabetes in the Leiden University Medical Center and the Alrijne Hospital between March 2015 and September 2016. Participants were initially randomly allocated to receive sitagliptin (100 mg/day) (n = 15) or placebo (n = 15) for 12 weeks, using a randomisation list that was set up by an unblinded pharmacist. All people involved in the study as well as participants were blinded to group assignment. Two participants withdrew from the study prior to completion (both in the sitagliptin group) and were subsequently replaced with two new participants that were allocated to the same treatment. Before and after treatment, fasting venous blood samples and skeletal muscle biopsies were obtained, OGTT was performed and body composition, resting energy expenditure and [18F] fluorodeoxyglucose ([18F]FDG) uptake by metabolic tissues were assessed. The primary study endpoint was the effect of sitagliptin on BAT volume and activity. RESULTS: One participant from the sitagliptin group was excluded from analysis, due to a distribution error, leaving 29 participants for further analysis. Sitagliptin, but not placebo, lowered glucose excursion (-40%; p < 0.003) during OGTT, accompanied by an improved insulinogenic index (+38%; p < 0.003) and oral disposition index (+44%; p < 0.003). In addition, sitagliptin lowered serum concentrations of triacylglycerol (-29%) and very large (-46%), large (-35%) and medium-sized (-24%) VLDL particles (all p < 0.05). Body weight, body composition and energy expenditure did not change. In skeletal muscle, sitagliptin increased mRNA expression of PGC1ß (also known as PPARGC1B) (+117%; p < 0.05), a main controller of mitochondrial oxidative energy metabolism. Although the primary endpoint of change in BAT volume and activity was not met, sitagliptin increased [18F] FDG uptake in subcutaneous WAT (sWAT; +53%; p < 0.05). Reported side effects were mild and transient and not necessarily related to the treatment. CONCLUSIONS/INTERPRETATION: Twelve weeks of sitagliptin in overweight, Europid men with prediabetes improves glucose tolerance and lipid metabolism, as related to increased [18F] FDG uptake by sWAT, rather than BAT, and upregulation of the mitochondrial gene PGC1ß in skeletal muscle. Studies on the effect of sitagliptin on preventing or delaying the progression of prediabetes into type 2 diabetes are warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT02294084. FUNDING: This study was funded by Merck Sharp & Dohme Corp, Dutch Heart Foundation, Dutch Diabetes Research Foundation, Ministry of Economic Affairs and the University of Granada.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Sobrepeso/tratamiento farmacológico , Sobrepeso/metabolismo , Estado Prediabético/tratamiento farmacológico , Fosfato de Sitagliptina/uso terapéutico , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Adulto , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Proteínas Portadoras/genética , Método Doble Ciego , Metabolismo Energético/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Estado Prediabético/metabolismo , Proteínas de Unión al ARN
13.
Circ Res ; 118(1): 173-82, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26837747

RESUMEN

Atherosclerosis, for which hyperlipidemia is a major risk factor, is the leading cause of morbidity and mortality in Western society, and new therapeutic strategies are highly warranted. Brown adipose tissue (BAT) is metabolically active in human adults. Although positron emission tomography-computed tomography using a glucose tracer is the golden standard to visualize and quantify the volume and activity of BAT, it has become clear that activated BAT combusts fatty acids rather than glucose. Here, we review the role of brown and beige adipocytes in lipoprotein metabolism and atherosclerosis, with evidence derived from both animal and human studies. On the basis of mainly data from animal models, we propose a model in which activated brown adipocytes use their intracellular triglyceride stores to generate fatty acids for combustion. BAT rapidly replenishes these stores by internalizing primarily lipoprotein triglyceride-derived fatty acids, generated by lipoprotein lipase-mediated hydrolysis of triglycerides, rather than by holoparticle uptake. As a consequence, BAT activation leads to the generation of lipoprotein remnants that are subsequently cleared via the liver provided that an intact apoE-low-density lipoprotein receptor pathway is present. Through these mechanisms, BAT activation reduces plasma triglyceride and cholesterol levels and attenuates diet-induced atherosclerosis development. Initial studies suggest that BAT activation in humans may also reduce triglyceride and cholesterol levels, but potential antiatherogenic effects should be assessed in future studies.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Aterosclerosis/metabolismo , Metabolismo de los Lípidos/fisiología , Lipoproteína Lipasa/metabolismo , Lipoproteínas/metabolismo , Animales , Aterosclerosis/diagnóstico , Humanos , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/metabolismo , Lipoproteínas LDL/metabolismo , Triglicéridos/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(21): 6748-53, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25964318

RESUMEN

Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces ß3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Obesidad/etiología , Fotoperiodo , Tejido Adiposo Pardo/inervación , Adiposidad/fisiología , Animales , Glucemia/metabolismo , Trastornos Cronobiológicos/complicaciones , Trastornos Cronobiológicos/fisiopatología , Ritmo Circadiano/fisiología , Ingestión de Alimentos , Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Lipoproteínas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Obesidad/metabolismo , Obesidad/patología , Receptores Adrenérgicos beta 3/metabolismo , Transducción de Señal , Simpatectomía , Sistema Nervioso Simpático/fisiopatología , Triglicéridos/metabolismo
15.
Int J Mol Sci ; 19(6)2018 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-29914151

RESUMEN

Obesity and dyslipidemia are major risk factors for the development of cardiovascular diseases (CVD). Quercetin, a natural flavonoid, lowers plasma triglycerides (TG) in human intervention studies, and its intake is associated with lower CVD risk. The aim of this study was to elucidate the mechanism by which quercetin lowers plasma TG levels in diet-induced obesity. C57Bl/6J mice received a high-fat diet (45% of calories derived from fat) with or without quercetin (0.1% w/w) for 12 weeks. Quercetin decreased plasma TG levels from nine weeks onwards (−19%, p < 0.05), without affecting food intake, body composition, or energy expenditure. Mechanistically, quercetin did not reduce intestinal fatty acid (FA) absorption. Rather, quercetin induced a slight reduction in liver Apob expression (−13%, p < 0.05), which suggests decreased very-low density lipoprotein-TG production. Interestingly, quercetin also markedly increased the uptake of [³H]oleate, which was derived from glycerol tri[³H]oleate-labeled lipoprotein-like particles by subcutaneous white adipose tissue (sWAT, +60%, p < 0.05). Furthermore, quercetin also markedly increased mRNA expression of Ucp1 (+229%, p < 0.05) and Elovl3 (+138%, p < 0.05), specifically in sWAT. Accordingly, only quercetin-treated animals showed uncoupling protein-1 protein-positive cells in sWAT, which is fully compatible with increased browning. Taken together, the TG-lowering effect of quercetin may, at least in part, be due to increased TG-derived FA uptake by sWAT as a consequence of browning.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Antioxidantes/uso terapéutico , Obesidad/tratamiento farmacológico , Quercetina/uso terapéutico , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Antioxidantes/farmacología , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Absorción Intestinal , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Quercetina/farmacología , Triglicéridos/sangre , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
16.
Int J Mol Sci ; 19(8)2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072596

RESUMEN

The human cytokine interleukin (IL)-37 is an anti-inflammatory member of the IL-1 family of cytokines. Transgenic expression of IL-37 in mice protects them from diet-induced obesity and associated metabolic complications including dyslipidemia, inflammation and insulin resistance. The precise mechanism of action leading to these beneficial metabolic effects is not entirely known. Therefore, we aimed to assess in detail the effect of transgenic IL-37 expression on energy balance, including food intake and energy expenditure. Feeding homozygous IL-37 transgenic mice and wild-type (WT) control mice a high-fat diet (HFD; 45% kcal palm fat) for 6 weeks showed that IL-37 reduced body weight related to a marked decrease in food intake. Subsequent mechanistic studies in mice with heterozygous IL-37 expression versus WT littermates, fed the HFD for 18 weeks, confirmed that IL-37 reduces food intake, which led to a decrease in lean body mass, but did not reduce fat mass and plasma lipid levels or alterations in energy expenditure independent of lean body mass. Taken together, this suggests that IL-37 reduces lean body mass by reducing food intake.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Interleucina-1/genética , Obesidad/genética , Regulación hacia Arriba , Animales , Glucemia/análisis , Composición Corporal , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Humanos , Lípidos/sangre , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/sangre , Obesidad/etiología , Obesidad/patología
17.
Eur Heart J ; 37(39): 2993-2997, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27125949

RESUMEN

AIMS: Normalization of hypercholesterolaemia, inflammation, hyperglycaemia, and obesity are main desired targets to prevent cardiovascular clinical events. Here we present a novel regulator of cholesterol metabolism, which simultaneously impacts on glucose intolerance and inflammation. METHODS AND RESULTS: Mice deficient for oxygen sensor HIF-prolyl hydroxylase 1 (PHD1) were backcrossed onto an atherogenic low-density lipoprotein receptor (LDLR) knockout background and atherosclerosis was studied upon 8 weeks of western-type diet. PHD1-/-LDLR-/- mice presented a sharp reduction in VLDL and LDL plasma cholesterol levels. In line, atherosclerotic plaque development, as measured by plaque area, necrotic core expansion and plaque stage was hampered in PHD1-/-LDLR-/- mice. Mechanistically, cholesterol-lowering in PHD1 deficient mice was a result of enhanced cholesterol excretion from blood to intestines and ultimately faeces. Additionally, flow cytometry of whole blood of these mice revealed significantly reduced counts of leucocytes and particularly of Ly6Chigh pro-inflammatory monocytes. In addition, when studying PHD1-/- in diet-induced obesity (14 weeks high-fat diet) mice were less glucose intolerant when compared with WT littermate controls. CONCLUSION: Overall, PHD1 knockout mice display a metabolic phenotype that generally is deemed protective for cardiovascular disease. Future studies should focus on the efficacy, safety, and gender-specific effects of PHD1 inhibition in humans, and unravel the molecular actors responsible for PHD1-driven, likely intestinal, and regulation of cholesterol metabolism.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Hiperglucemia , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxígeno , Prolil Hidroxilasas , Receptores de LDL
18.
J Therm Biol ; 69: 238-248, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29037389

RESUMEN

It is colloquially stated that body size plays a role in the human response to cold, but the magnitude and details of this interaction are unclear. To explore the inherent influence of body size on cold-exposed metabolism, we investigated the relation between body composition and resting metabolic rate in humans at thermoneutrality and during cooling within the nonshivering thermogenesis range. Body composition and resting energy expenditure were measured in 20 lean and 20 overweight men at thermoneutrality and during individualized cold exposure. Metabolic rates as a function of ambient temperature were investigated considering the variability in body mass and composition. We observed an inverse relationship between body size and the lower critical temperature (LCT), i.e. the threshold where thermoneutrality ends and cold activates thermogenesis. LCT was higher in lean than overweight subjects (22.1 ± 0.6 vs 19.5 ± 0.5°C, p < 0.001). Below LCT, minimum conductance was identical between lean and overweight (100 ± 4 vs 97 ± 3kcal/°C/day respectively, p = 0.45). Overweight individuals had higher basal metabolic rate (BMR) explained mostly by the higher lean mass, and lower cold-induced thermogenesis (CIT) per degree of cold exposure. Below thermoneutrality, energy expenditure did not scale to lean body mass. Overweight subjects had lower heat loss per body surface area (44.7 ± 1.3 vs 54.7 ± 2.3kcal/°C/m2/day, p < 0.001). We conclude that larger body sizes possessed reduced LCT as explained by higher BMR related to more lean mass rather than a change in whole-body conductance. Thus, larger individuals with higher lean mass need to be exposed to colder temperatures to activate CIT, not because of increased insulation, but because of a higher basal heat generation. Our study suggests that the distinct effects of body size and composition on energy expenditure should be taken in account when exploring the metabolism of humans exposed to cold.


Asunto(s)
Metabolismo Basal , Sobrepeso/metabolismo , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/fisiopatología , Adolescente , Adulto , Composición Corporal , Índice de Masa Corporal , Tamaño Corporal , Peso Corporal , Frío , Metabolismo Energético , Humanos , Masculino , Persona de Mediana Edad , Sobrepeso/fisiopatología , Estudios Retrospectivos , Adulto Joven
19.
Arch Biochem Biophys ; 589: 152-7, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26384768

RESUMEN

During mild cold exposure, non-shivering thermogenesis increases to maintain core body temperature by increasing utilization of substrates, especially fatty acids (FA), ultimately affecting lipid-associated metabolites. We aimed to investigate whether mild cooling induces changes in other metabolites and whether this response differs between white Caucasians and South Asians, who have a disadvantageous metabolic phenotype. 12 lean male Dutch white Caucasians and 12 matched Dutch South Asians were exposed to mild cold. Before and after 100 min exposure, serum samples were collected for analysis of 163 metabolites and 27 derived parameters using high throughput metabolomics. The overall response to mild cooling between both ethnicities was not different, therefore the data were pooled. After Bonferroni correction, mild cooling significantly changed 44 of 190 (23%) metabolic parameters. Specifically, cooling increased 19 phosphatidylcholine (PC) species, only those containing very long chain FAs, and increased the total class of PC containing mono-unsaturated FAs (+12.5%). Furthermore, cooling increased 10 sphingomyelin species as well as the amino acids glutamine (+18.7%), glycine (+11.6%) and histidine (+10.6%), and decreased short-chain (C3 and C4) acylcarnitines (-17.1% and -19.4%, respectively). In conclusion, mild cooling elicits substantial effects on serum metabolites in healthy males, irrespective of white Caucasian or South Asian ethnicity.


Asunto(s)
Pueblo Asiatico , Peso Corporal , Frío , Metabolómica , Termogénesis , Población Blanca , Adolescente , Adulto , Carnitina/análogos & derivados , Carnitina/sangre , Ácidos Grasos no Esterificados/sangre , Glicerofosfolípidos/sangre , Humanos , Masculino , Esfingomielinas/sangre , Adulto Joven
20.
Handb Exp Pharmacol ; 233: 301-19, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26003832

RESUMEN

Since 2009, the presence of brown adipose tissue (BAT) in adult humans has been irrefutably proven. It is estimated that active BAT can contribute up to 2.5-5% of resting metabolic rate in humans, suggesting that sustained activation of BAT may alleviate obesity and associated disorders. In the current chapter, the discovery of BAT in adult humans will be discussed. Furthermore, the characteristics of human BAT, methods to visualize the tissue as well as physiological and pharmacological methods to enhance its activity will be stressed.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Aclimatación , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/efectos de los fármacos , Metabolismo Energético , Fluorodesoxiglucosa F18 , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos , Cintigrafía , Termogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA