RESUMEN
Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.
Asunto(s)
Consumo de Bebidas Alcohólicas , Predisposición Genética a la Enfermedad , Variación Genética , Internacionalidad , Herencia Multifactorial , Uso de Tabaco , Humanos , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Herencia Multifactorial/genética , Factores de Riesgo , Uso de Tabaco/genética , Consumo de Bebidas Alcohólicas/genética , Transcriptoma , Tamaño de la Muestra , Sitios Genéticos/genética , Europa (Continente)/etnologíaRESUMEN
Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.
Asunto(s)
Asma/epidemiología , Biomarcadores/metabolismo , Dermatitis Atópica/epidemiología , Leucocitos/patología , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Sitios de Carácter Cuantitativo , Asma/genética , Asma/metabolismo , Asma/patología , Dermatitis Atópica/genética , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Pronóstico , Proteoma/análisis , Proteoma/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Reino Unido/epidemiología , Estados Unidos/epidemiología , Secuenciación Completa del GenomaRESUMEN
BACKGROUND: Lipid mediators, bioactive products of polyunsaturated fatty acid metabolism, contribute to inflammation initiation and resolution in allergic diseases; however, their presence in lung-related biosamples has not been fully described. OBJECTIVE: We aimed to quantify lipid mediators in the nasal airway epithelium and characterize preliminary associations with asthma. METHODS: Using liquid chromatography-mass spectrometry, we conducted a pilot study to quantify 56 lipid mediators from nasal epithelial samples collected from 11 female participants of an outpatient asthma clinic and community controls (aged 30-55 years). We examined the presence of each compound using descriptive statistics to test whether lipid mediators could distinguish subjects with asthma (n = 8) from control subjects (n = 3) using linear regression and partial least squares discriminant analysis. RESULTS: Fifteen lipid mediators were detectable in all samples, including resolvin (Rv) D5 (RvD5), with the highest median concentrations (in pg/µg protein) of 13-HODE (126.481), 15-HETE (32.869), and 13-OxoODE (13.251). From linear regression adjusted for age, prostaglandin E2 (PGE2) had a trend (P < .1) for higher concentrations in patients with severe asthma compared to controls (mean difference, 0.95; 95% confidence interval, -0.04 to 1.95). Asthma patients had higher scores on principal component 3 compared to controls (mean difference, 2.42; 95% confidence interval, 0.89 to 3.96), which represented lower levels of proresolving 15-HEPE, 19,20-DiHDPA, RvD5, 14-HDHA, 17-HDHA, and 13-HOTrE. Most of these compounds were best at discriminating asthma cases from controls in partial least squares discriminant analysis. CONCLUSION: Lipid mediators are detectable in the nasal epithelium, and their levels distinguish asthma cases from controls.
Asunto(s)
Asma , Dinoprostona , Eicosanoides , Femenino , Humanos , Mucosa Nasal , Proyectos PilotoRESUMEN
BACKGROUND: While numerous genetic loci associated with atopic dermatitis (AD) have been discovered, to date, work leveraging the combined burden of AD risk variants across the genome to predict disease risk has been limited. OBJECTIVES: This study aims to determine whether polygenic risk scores (PRSs) relying on genetic determinants for AD provide useful predictions for disease occurrence and severity. It also explicitly tests the value of including genome-wide association studies of related allergic phenotypes and known FLG loss-of-function (LOF) variants. METHODS: AD PRSs were constructed for 1619 European American individuals from the Atopic Dermatitis Research Network using an AD training dataset and an atopic training dataset including AD, childhood onset asthma, and general allergy. Additionally, whole genome sequencing data were used to explore genetic scoring specific to FLG LOF mutations. RESULTS: Genetic scores derived from the AD-only genome-wide association studies were predictive of AD cases (PRSAD: odds ratio [OR], 1.70; 95% CI, 1.49-1.93). Accuracy was first improved when PRSs were built off the larger atopy genome-wide association studies (PRSAD+: OR, 2.16; 95% CI, 1.89-2.47) and further improved when including FLG LOF mutations (PRSAD++: OR, 3.23; 95% CI, 2.57-4.07). Importantly, while all 3 PRSs correlated with AD severity, the best prediction was from PRSAD++, which distinguished individuals with severe AD from control subjects with OR of 3.86 (95% CI, 2.77-5.36). CONCLUSIONS: This study demonstrates how PRSs for AD that include genetic determinants across atopic phenotypes and FLG LOF variants may be a promising tool for identifying individuals at high risk for developing disease and specifically severe disease.
Asunto(s)
Dermatitis Atópica/genética , Proteínas Filagrina/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Desequilibrio de Ligamiento , Mutación con Pérdida de Función , Masculino , FenotipoRESUMEN
BACKGROUND: Asthma is a complex chronic inflammatory disease of the airways. Association studies between HLA and asthma were first reported in the 1970s, and yet, the precise role of HLA alleles in asthma is not fully understood. Numerous genome-wide association studies were recently conducted on asthma, but were always limited to simple genetic markers (single nucleotide polymorphisms) and not complex HLA gene polymorphisms (alleles/haplotypes), therefore not capturing the biological relevance of this complex locus for asthma pathogenesis. OBJECTIVE: To run the first HLA-centric association study with asthma and specific asthma-related phenotypes in a large cohort of African-ancestry individuals. METHODS: We collected high-density genomics data for the Consortium on Asthma among African-ancestry Populations in the Americas (N = 4993) participants. Using computer-intensive machine-learning attribute bagging methods to infer HLA alleles, and Easy-HLA to infer HLA 5-gene haplotypes, we conducted a high-throughput HLA-centric association study of asthma susceptibility and total serum IgE (tIgE) levels in subjects with and without asthma. RESULTS: Among the 1607 individuals with asthma, 972 had available tIgE levels, with a mean tIgE level of 198.7 IU/mL. We could not identify any association with asthma susceptibility. However, we showed that HLA-DRB1∗09:01 was associated with increased tIgE levels (P = 8.5 × 10-4; weighted effect size, 0.51 [0.15-0.87]). CONCLUSIONS: We identified for the first time an HLA allele associated with tIgE levels in African-ancestry individuals with asthma. Our report emphasizes that by leveraging powerful computational machine-learning methods, specific/extreme phenotypes, and population diversity, we can explore HLA gene polymorphisms in depth and reveal the full extent of complex disease associations.
Asunto(s)
Alelos , Negro o Afroamericano/genética , Cadenas HLA-DRB1/genética , Inmunoglobulina E/inmunología , Polimorfismo de Nucleótido Simple , Asma , Femenino , Cadenas HLA-DRB1/inmunología , Humanos , MasculinoRESUMEN
Ulcerative colitis (UC) is a chronic, relapsing and debilitating idiopathic inflammation, with variable and complex pathophysiologies. Our objective was to elucidate patterns of gene expression underlying the progression of UC disease. Single endoscopic pinch FFPE biopsies (n = 41) were sampled at both active and inactive stages at the same site in individual UC patients and compared with each other and with non-inflammatory bowel disease healthy controls. Gene expression results were validated by quantitative reverse transcriptase-PCR (QRT-PCR), and results at the protein level were validated by immunohistochemistry and western blot. Analysis of microarray results demonstrated that UC patients in remission display an intermediate gene expression phenotype between active UC patients and controls. It is clear that UC active site recovery does not revert fully back to a healthy control phenotype. Both UC active and inactive tissue displayed evidence, at both the gene expression and protein level, of a positive precancerous state as indicated by increases in the expression of Chitinase 3-Like-1, and the colorectal cancer metastasis marker MMP1. A key distinguishing feature between active and inactive UC, however, was the mobilization of marker genes and proteins for the Epithelial Mesenchymal Transition (EMT) pathway only in active UC. Analysis of the gene expression signatures associated with UC remission identified multiple pathways which appear to be permanently dysregulated in UC patients at formerly active sites in spite of clear histological recovery. Among these pathways, the EMT pathway was specifically up-regulated only in active UC emphasizing the potential for cancer progression in these patients.
Asunto(s)
Colitis Ulcerosa/metabolismo , Transición Epitelial-Mesenquimal , Proteínas de la Matriz Extracelular/biosíntesis , Regulación de la Expresión Génica , Metaloproteinasa 1 de la Matriz/biosíntesis , Adulto , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Proteínas de la Matriz Extracelular/genética , Femenino , Humanos , Masculino , Metaloproteinasa 1 de la Matriz/genética , Persona de Mediana EdadRESUMEN
BACKGROUND: COPD is a heterogeneous disease, but there is little consensus on specific definitions for COPD subtypes. Unsupervised clustering offers the promise of 'unbiased' data-driven assessment of COPD heterogeneity. Multiple groups have identified COPD subtypes using cluster analysis, but there has been no systematic assessment of the reproducibility of these subtypes. OBJECTIVE: We performed clustering analyses across 10 cohorts in North America and Europe in order to assess the reproducibility of (1) correlation patterns of key COPD-related clinical characteristics and (2) clustering results. METHODS: We studied 17 146 individuals with COPD using identical methods and common COPD-related characteristics across cohorts (FEV1, FEV1/FVC, FVC, body mass index, Modified Medical Research Council score, asthma and cardiovascular comorbid disease). Correlation patterns between these clinical characteristics were assessed by principal components analysis (PCA). Cluster analysis was performed using k-medoids and hierarchical clustering, and concordance of clustering solutions was quantified with normalised mutual information (NMI), a metric that ranges from 0 to 1 with higher values indicating greater concordance. RESULTS: The reproducibility of COPD clustering subtypes across studies was modest (median NMI range 0.17-0.43). For methods that excluded individuals that did not clearly belong to any cluster, agreement was better but still suboptimal (median NMI range 0.32-0.60). Continuous representations of COPD clinical characteristics derived from PCA were much more consistent across studies. CONCLUSIONS: Identical clustering analyses across multiple COPD cohorts showed modest reproducibility. COPD heterogeneity is better characterised by continuous disease traits coexisting in varying degrees within the same individual, rather than by mutually exclusive COPD subtypes.
Asunto(s)
Análisis por Conglomerados , Volumen Espiratorio Forzado , Enfermedad Pulmonar Obstructiva Crónica/clasificación , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Índice de Masa Corporal , Europa (Continente)/epidemiología , Humanos , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Reproducibilidad de los Resultados , Estados Unidos/epidemiologíaRESUMEN
BACKGROUND: Genome-wide association studies have yet to identify the majority of genetic variants involved in asthma. We hypothesized that expression quantitative trait locus (eQTL) mapping can identify novel asthma genes by enabling prioritization of putative functional variants for association testing. OBJECTIVE: We evaluated 6706 cis-acting expression-associated variants (eSNPs) identified through a genome-wide eQTL survey of CD4(+) lymphocytes for association with asthma. METHODS: eSNPs were tested for association with asthma in 359 asthmatic patients and 846 control subjects from the Childhood Asthma Management Program, with verification by using family-based testing. Significant associations were tested for replication in 579 parent-child trios with asthma from Costa Rica. Further functional validation was performed by using formaldehyde-assisted isolation of regulatory elements (FAIRE) quantitative PCR and chromatin immunoprecipitation PCR in lung-derived epithelial cell lines (Beas-2B and A549) and Jurkat cells, a leukemia cell line derived from T lymphocytes. RESULTS: Cis-acting eSNPs demonstrated associations with asthma in both cohorts. We confirmed the previously reported association of ORMDL3/GSDMB variants with asthma (combined P = 2.9 × 10(-8)). Reproducible associations were also observed for eSNPs in 3 additional genes: fatty acid desaturase 2 (FADS2; P = .002), N-acetyl-α-D-galactosaminidase (NAGA; P = .0002), and Factor XIII, A1 (F13A1; P = .0001). Subsequently, we demonstrated that FADS2 mRNA is increased in CD4(+) lymphocytes in asthmatic patients and that the associated eSNPs reside within DNA segments with histone modifications that denote open chromatin status and confer enhancer activity. CONCLUSIONS: Our results demonstrate the utility of eQTL mapping in the identification of novel asthma genes and provide evidence for the importance of FADS2, NAGA, and F13A1 in the pathogenesis of asthma.
Asunto(s)
Asma , Linfocitos T CD4-Positivos/inmunología , Ácido Graso Desaturasas , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , alfa-N-Acetilgalactosaminidasa , Asma/epidemiología , Asma/genética , Asma/inmunología , Asma/patología , Linfocitos T CD4-Positivos/patología , Niño , Preescolar , Costa Rica , Método Doble Ciego , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/inmunología , Femenino , Humanos , Masculino , alfa-N-Acetilgalactosaminidasa/genética , alfa-N-Acetilgalactosaminidasa/inmunologíaRESUMEN
Background: Asthma is a chronic inflammatory disease of the airways that is heterogeneous and multifactorial, making its accurate characterization a complex process. Therefore, identifying the genetic variations associated with asthma and discovering the molecular interactions between the omics that confer risk of developing this disease will help us to unravel the biological pathways involved in its pathogenesis. Objective: We sought to develop a predictive genetic panel for asthma using machine learning methods. Methods: We tested 3 variable selection methods: Boruta's algorithm, the top 200 genome-wide association study markers according to their respective P values, and an elastic net regression. Ten different algorithms were chosen for the classification tests. A predictive panel was built on the basis of joint scores between the classification algorithms. Results: Two variable selection methods, Boruta and genome-wide association studies, were statistically similar in terms of the average accuracies generated, whereas elastic net had the worst overall performance. The predictive genetic panel was completed with 155 single-nucleotide variants, with 91.18% accuracy, 92.75% sensitivity, and 89.55% specificity using the support vector machine algorithm. The markers used range from known single-nucleotide variants to those not previously described in the literature. Our study shows potential in creating genetic prediction panels with tailored penalties per marker, aiding in the identification of optimal machine learning methods for intricate results. Conclusions: This method is able to classify asthma and nonasthma effectively, proving its potential utility in clinical prediction and diagnosis.
RESUMEN
Breast cancer is the second most common cancer globally. Most deaths from breast cancer are due to metastatic disease which often follows long periods of clinical dormancy1. Understanding the mechanisms that disrupt the quiescence of dormant disseminated cancer cells (DCC) is crucial for addressing metastatic progression. Infection with respiratory viruses (e.g. influenza or SARS-CoV-2) is common and triggers an inflammatory response locally and systemically2,3. Here we show that influenza virus infection leads to loss of the pro-dormancy mesenchymal phenotype in breast DCC in the lung, causing DCC proliferation within days of infection, and a greater than 100-fold expansion of carcinoma cells into metastatic lesions within two weeks. Such DCC phenotypic change and expansion is interleukin-6 (IL-6)-dependent. We further show that CD4 T cells are required for the maintenance of pulmonary metastatic burden post-influenza virus infection, in part through attenuation of CD8 cell responses in the lungs. Single-cell RNA-seq analyses reveal DCC-dependent impairment of T-cell activation in the lungs of infected mice. SARS-CoV-2 infected mice also showed increased breast DCC expansion in lungs post-infection. Expanding our findings to human observational data, we observed that cancer survivors contracting a SARS-CoV-2 infection have substantially increased risks of lung metastatic progression and cancer-related death compared to cancer survivors who did not. These discoveries underscore the significant impact of respiratory viral infections on the resurgence of metastatic cancer, offering novel insights into the interconnection between infectious diseases and cancer metastasis.
RESUMEN
Asthma has striking disparities across ancestral groups, but the molecular underpinning of these differences is poorly understood and minimally studied. A goal of the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to understand multi-omic signatures of asthma focusing on populations of African ancestry. RNASeq and DNA methylation data are generated from nasal epithelium including cases (current asthma, N = 253) and controls (never-asthma, N = 283) from 7 different geographic sites to identify differentially expressed genes (DEGs) and gene networks. We identify 389 DEGs; the top DEG, FN1, was downregulated in cases (q = 3.26 × 10-9) and encodes fibronectin which plays a role in wound healing. The top three gene expression modules implicate networks related to immune response (CEACAM5; p = 9.62 × 10-16 and CPA3; p = 2.39 × 10-14) and wound healing (FN1; p = 7.63 × 10-9). Multi-omic analysis identifies FKBP5, a co-chaperone of glucocorticoid receptor signaling known to be involved in drug response in asthma, where the association between nasal epithelium gene expression is likely regulated by methylation and is associated with increased use of inhaled corticosteroids. This work reveals molecular dysregulation on three axes - increased Th2 inflammation, decreased capacity for wound healing, and impaired drug response - that may play a critical role in asthma within the African Diaspora.
Asunto(s)
Asma , Población Negra , Metilación de ADN , Mucosa Nasal , Proteínas de Unión a Tacrolimus , Humanos , Asma/genética , Asma/metabolismo , Mucosa Nasal/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Femenino , Masculino , Población Negra/genética , Adulto , Redes Reguladoras de Genes , Fibronectinas/metabolismo , Fibronectinas/genética , Estudios de Casos y Controles , Regulación de la Expresión Génica , Persona de Mediana Edad , MultiómicaRESUMEN
Anthropometric traits, measuring body size and shape, are highly heritable and significant clinical risk factors for cardiometabolic disorders. These traits have been extensively studied in genome-wide association studies (GWASs), with hundreds of genome-wide significant loci identified. We performed a whole-exome sequence analysis of the genetics of height, body mass index (BMI) and waist/hip ratio (WHR). We meta-analyzed single-variant and gene-based associations of whole-exome sequence variation with height, BMI, and WHR in up to 22,004 individuals, and we assessed replication of our findings in up to 16,418 individuals from 10 independent cohorts from Trans-Omics for Precision Medicine (TOPMed). We identified four trait associations with single-nucleotide variants (SNVs; two for height and two for BMI) and replicated the LECT2 gene association with height. Our expression quantitative trait locus (eQTL) analysis within previously reported GWAS loci implicated CEP63 and RFT1 as potential functional genes for known height loci. We further assessed enrichment of SNVs, which were monogenic or syndromic variants within loci associated with our three traits. This led to the significant enrichment results for height, whereas we observed no Bonferroni-corrected significance for all SNVs. With a sample size of â¼20,000 whole-exome sequences in our discovery dataset, our findings demonstrate the importance of genomic sequencing in genetic association studies, yet they also illustrate the challenges in identifying effects of rare genetic variants.
Asunto(s)
Exoma , Estudio de Asociación del Genoma Completo , Humanos , Exoma/genética , Índice de Masa Corporal , Sitios de Carácter Cuantitativo/genética , Antropometría , Péptidos y Proteínas de Señalización Intercelular , Proteínas de Ciclo CelularRESUMEN
Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.
Asunto(s)
Reposicionamiento de Medicamentos , Transcriptoma , Humanos , Transcriptoma/genética , Estudio de Asociación del Genoma Completo/métodos , Uso de Tabaco , Biología , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la EnfermedadRESUMEN
Obesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10-9). Notably, we identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.
RESUMEN
Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this 'missing heritability'. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.
Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Polimorfismo de Nucleótido Simple/genética , Fenotipo , Fumar/genéticaRESUMEN
BACKGROUND: Asthma is the most common chronic disease in children, occurring at higher frequencies and with more severe disease in children with African ancestry. METHODS: We tested for association with haplotypes at the most replicated and significant childhood-onset asthma locus at 17q12-q21 and asthma in European American and African American children. Following this, we used whole-genome sequencing data from 1060 African American and 100 European American individuals to identify novel variants on a high-risk African American-specific haplotype. We characterized these variants in silico using gene expression and ATAC-seq data from airway epithelial cells, functional annotations from ENCODE, and promoter capture (pc)Hi-C maps in airway epithelial cells. Candidate causal variants were then assessed for correlation with asthma-associated phenotypes in African American children and adults. RESULTS: Our studies revealed nine novel African-specific common variants, enriched on a high-risk asthma haplotype, which regulated the expression of GSDMA in airway epithelial cells and were associated with features of severe asthma. Using ENCODE annotations, ATAC-seq, and pcHi-C, we narrowed the associations to two candidate causal variants that are associated with features of T2 low severe asthma. CONCLUSIONS: Previously unknown genetic variation at the 17q12-21 childhood-onset asthma locus contributes to asthma severity in individuals with African ancestries. We suggest that many other population-specific variants that have not been discovered in GWAS contribute to the genetic risk for asthma and other common diseases.
Asunto(s)
Asma , Negro o Afroamericano , Negro o Afroamericano/genética , Alelos , Asma/genética , Asma/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de Neoplasias/genética , Polimorfismo de Nucleótido Simple , Proteínas Citotóxicas Formadoras de PorosRESUMEN
BACKGROUND: Since the onset of the SARS-CoV-2 pandemic, most clinical testing has focused on RT-PCR1. Host epigenome manipulation post coronavirus infection2-4 suggests that DNA methylation signatures may differentiate patients with SARS-CoV-2 infection from uninfected individuals, and help predict COVID-19 disease severity, even at initial presentation. METHODS: We customized Illumina's Infinium MethylationEPIC array to enhance immune response detection and profiled peripheral blood samples from 164 COVID-19 patients with longitudinal measurements of disease severity and 296 patient controls. RESULTS: Epigenome-wide association analysis revealed 13,033 genome-wide significant methylation sites for case-vs-control status. Genes and pathways involved in interferon signaling and viral response were significantly enriched among differentially methylated sites. We observe highly significant associations at genes previously reported in genetic association studies (e.g. IRF7, OAS1). Using machine learning techniques, models built using sparse regression yielded highly predictive findings: cross-validated best fit AUC was 93.6% for case-vs-control status, and 79.1%, 80.8%, and 84.4% for hospitalization, ICU admission, and progression to death, respectively. CONCLUSIONS: In summary, the strong COVID-19-specific epigenetic signature in peripheral blood driven by key immune-related pathways related to infection status, disease severity, and clinical deterioration provides insights useful for diagnosis and prognosis of patients with viral infections.
Viral infections affect the body in many ways, including via changes to the epigenome, the sum of chemical modifications to an individual's collection of genes that affect gene activity. Here, we analyzed the epigenome in blood samples from people with and without COVID-19 to determine whether we could find changes consistent with SARS-CoV-2 infection. Using a combination of statistical and machine learning techniques, we identify markers of SARS-CoV-2 infection as well as of severity and progression of COVID-19 disease. These signals of disease progression were present from the initial blood draw when first walking into the hospital. Together, these approaches demonstrate the potential of measuring the epigenome for monitoring SARS-CoV-2 status and severity.
RESUMEN
BACKGROUND: Since the onset of the SARS-CoV-2 pandemic, most clinical testing has focused on RT-PCR1. Host epigenome manipulation post coronavirus infection2-4 suggests that DNA methylation signatures may differentiate patients with SARS-CoV-2 infection from uninfected individuals, and help predict COVID-19 disease severity, even at initial presentation. METHODS: We customized Illumina's Infinium MethylationEPIC array to enhance immune response detection and profiled peripheral blood samples from 164 COVID-19 patients with longitudinal measurements of disease severity and 296 patient controls. RESULTS: Epigenome-wide association analysis revealed 13,033 genome-wide significant methylation sites for case-vs-control status. Genes and pathways involved in interferon signaling and viral response were significantly enriched among differentially methylated sites. We observe highly significant associations at genes previously reported in genetic association studies (e.g. IRF7, OAS1). Using machine learning techniques, models built using sparse regression yielded highly predictive findings: cross-validated best fit AUC was 93.6% for case-vs-control status, and 79.1%, 80.8%, and 84.4% for hospitalization, ICU admission, and progression to death, respectively. CONCLUSIONS: In summary, the strong COVID-19-specific epigenetic signature in peripheral blood driven by key immune-related pathways related to infection status, disease severity, and clinical deterioration provides insights useful for diagnosis and prognosis of patients with viral infections.
RESUMEN
BACKGROUND: Systems biology and functional genomics require genome-wide datasets and resources. Complete sets of cloned open reading frames (ORFs) have been made for about a dozen bacterial species and allow researchers to express and study complete proteomes in a high-throughput fashion. RESULTS: We have constructed an open reading frame (ORFeome) collection of 3974 or 94% of the known Escherichia coli K-12 ORFs in Gateway entry vector pENTR/Zeo. The collection has been used for protein expression and protein interaction studies. For example, we have compared interactions among YgjD, YjeE and YeaZ proteins in E. coli, Streptococcus pneumoniae, and Staphylococcus aureus. We also compare this ORFeome with other Gateway-compatible bacterial ORFeomes and show its utility for comparative functional genomics. CONCLUSIONS: The E. coli ORFeome provides a useful resource for functional genomics and other areas of protein research in a highly flexible format. Our comparison with other ORFeomes makes comparative analyses straighforward and facilitates direct comparisons of many proteins across many genomes.
Asunto(s)
Escherichia coli K12/genética , Sistemas de Lectura Abierta , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Análisis de Secuencia de ADN , Staphylococcus aureus/genética , Streptococcus pneumoniae/genéticaRESUMEN
BACKGROUND: Although epigenetic mechanisms are important risk factors for allergic disease, few studies have evaluated DNA methylation differences associated with atopic dermatitis (AD), and none has focused on AD with eczema herpeticum (ADEH+). We will determine how methylation varies in AD individuals with/without EH and associated traits. We modeled differences in genome-wide DNA methylation in whole blood cells from 90 ADEH+, 83 ADEH-, and 84 non-atopic, healthy control subjects, replicating in 36 ADEH+, 53 ADEH-, and 55 non-atopic healthy control subjects. We adjusted for cell-type composition in our models and used genome-wide and candidate-gene approaches. RESULTS: We replicated one CpG which was significantly differentially methylated by severity, with suggestive replication at four others showing differential methylation by phenotype or severity. Not adjusting for eosinophil content, we identified 490 significantly differentially methylated CpGs (ADEH+ vs healthy controls, genome-wide). Many of these associated with severity measures, especially eosinophil count (431/490 sites). CONCLUSIONS: We identified a CpG in IL4 associated with serum tIgE levels, supporting a role for Th2 immune mediating mechanisms in AD. Changes in eosinophil level, a measure of disease severity, are associated with methylation changes, providing a potential mechanism for phenotypic changes in immune response-related traits.