Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biochemistry ; 61(17): 1705-1722, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35972884

RESUMEN

Sirtuins are protein deacylases regulating metabolism and stress responses and implicated in aging-related diseases. Modulators of the human sirtuins 1-7 are sought as chemical tools and potential therapeutics, for example, for treatment of cancer. We were able to show that 3-aryl-mercapto-succinylated- and 3-benzyl-mercapto-succinylated peptide derivatives yield selective Sirt5 inhibitors with low nM Ki values. Here, we synthesized and characterized 3-aryl-mercapto-butyrylated peptide derivatives as effective and selective sirtuin 2 inhibitors with KD values in the low nanomolar range. According to kinetic measurements and microscale thermophoresis/surface plasmon resonance experiments, the respective inhibitors bind with the 3-aryl-mercapto moiety in the selectivity pocket of Sirtuin 2, inducing a rearrangement of the active site. In contrast, 3-aryl-mercapto-nonalyl or palmitoyl derivatives are characterized by a switch in the binding mode blocking both the hydrophobic channel by the fatty acyl chain and the nicotinamide pocket by the 3-aryl-mercapto moiety.


Asunto(s)
Sirtuina 2 , Sirtuinas , Dominio Catalítico , Humanos , Lisina/metabolismo , Niacinamida , Péptidos , Sirtuina 2/metabolismo , Sirtuinas/metabolismo
2.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328563

RESUMEN

Bispecific antibodies (bsAbs) were first developed in the 1960s and are now emerging as a leading class of immunotherapies for cancer treatment with the potential to further improve clinical efficacy and safety. Many different formats of bsAbs have been established in the last few years, mainly generated genetically. Here we report on a novel, flexible, and fast chemo-enzymatic, as well as purely enzymatic strategies, for generating bispecific antibody fragments by covalent fusion of two functional antibody Fab fragments (Fabs). For the chemo-enzymatic approach, we first modified the single Fabs site-specifically with click anchors using an enhanced Trypsiligase variant (eTl) and afterward converted the modified Fabs into the final heterodimers via click chemistry. Regarding the latter, we used the strain-promoted alkyne-azide cycloaddition (SPAAC) and inverse electron-demand Diels-Alder reaction (IEDDA) click approaches well known for their fast reaction kinetics and fewer side reactions. For applications where the non-natural linkages or hydrophobic click chemistry products might interfere, we developed two purely enzymatic alternatives enabling C- to C- and C- to N-terminal coupling of the two Fabs via a native peptide bond. This simple system could be expanded into a modular system, eliminating the need for extensive genetic engineering. The bispecific Fab fragments (bsFabs) produced here to bind the growth factors ErbB2 and ErbB3 with similar KD values, such as the sole Fabs. Tested in breast cancer cell lines, we obtained biologically active bsFabs with improved properties compared to its single Fab counterparts.


Asunto(s)
Anticuerpos Biespecíficos , Azidas/química , Química Clic , Reacción de Cicloadición , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética
3.
Chembiochem ; 22(7): 1201-1204, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33174659

RESUMEN

Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site-directed linkage of small-sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells. Specific trypsiligase recognition of the site of linkage was mediated by the dipeptide sequence Arg-His added to the proteins' native N termini, pointing outside the cell membrane. The labeling procedure takes only about 5 minutes, as demonstrated for couplings of the fluorescence dye tetramethyl rhodamine and the affinity label biotin as well.


Asunto(s)
Basigina/metabolismo , Receptores ErbB/metabolismo , Colorantes Fluorescentes/metabolismo , Tripsina/metabolismo , Basigina/química , Biocatálisis , Dipéptidos/metabolismo , Receptores ErbB/química , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Microscopía Confocal , Especificidad por Sustrato , Tripsina/genética
4.
Phys Chem Chem Phys ; 23(21): 12395-12407, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34027941

RESUMEN

Ionic liquids (ILs) have gained a lot of attention as alternative solvents in many fields of science in the last two decades. It is known that the type of anion has a significant influence on the macroscopic properties of the IL. To gain insights into the molecular mechanisms responsible for these effects it is important to characterize these systems at the microscopic level. Such information can be obtained from nuclear spin-relaxation studies which for compounds with natural isotope abundance are typically performed using direct 1H or 13C measurements. Here we used direct 15N measurements to characterize spin relaxation of non-protonated nitrogens in imidazolium-based ILs which are liquid at ambient temperature. We report heteronuclear 1H-15N scalar coupling constants (nJHN) and 15N relaxation parameters for non-protonated nitrogens in ten 1-ethyl-3-methylimidazolium ([C2C1IM]+)-based ILs containing a broad range of anions. The 15N relaxation rates and steady-state heteronuclear 15N-{1H} NOEs were measured using direct 15N detection at 293.2 K and two magnetic field strengths, 9.4 T and 16.4 T. The experimental data were analyzed to determine hydrodynamic characteristics of ILs and to assess the contributions to 15N relaxation from 15N chemical shift anisotropy and from 1H-15N dipolar interactions with non-bonded protons. We found that the rotational correlation times of the [C2C1IM]+ cation determined from 15N relaxation measurements at room temperature correlate linearly with the macroscopic viscosity of the ILs. Depending on the selected anion, the 15N relaxation characteristics of [C2C1IM]+ differ considerably reflecting the influence of the anion on the physicochemical properties of the IL.

5.
Bioorg Chem ; 117: 105425, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695733

RESUMEN

Histone deacylase 11 and human sirtuins are able to remove fatty acid-derived acyl moieties from the ε-amino group of lysine residues. Specific substrates are needed for investigating the biological functions of these enzymes. Additionally, appropriate screening systems are required for identification of modulators of enzymatic activities of HDAC11 and sirtuins. We designed and synthesized a set of activity probes by incorporation of a thioamide quencher unit into the fatty acid-derived acyl chain and a fluorophore in the peptide sequence. Systematic variation of both fluorophore and quencher position resulted "super-substrates" with catalytic constants of up to 15,000,000 M-1s-1 for human sirtuin 2 (Sirt2) enabling measurements using enzyme concentrations down to 100 pM in microtiter plate-based screening formats. It could be demonstrated that the stalled intermediate formed by the reaction of Sirt2-bound thiomyristoylated peptide and NAD+ has IC50 values below 200 pM.


Asunto(s)
Colorantes Fluorescentes/química , Histona Desacetilasas/metabolismo , Tomografía de Emisión de Positrones , Sirtuinas/metabolismo , Tioamidas/química , Transporte de Electrón , Colorantes Fluorescentes/farmacología , Histona Desacetilasas/química , Histona Desacetilasas/genética , Humanos , Estructura Molecular , Procesos Fotoquímicos , Sirtuinas/antagonistas & inhibidores , Sirtuinas/química , Tioamidas/farmacología
6.
Nucleic Acids Res ; 45(7): 3997-4005, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28158820

RESUMEN

Biological evolution resulted in a homochiral world in which nucleic acids consist exclusively of d-nucleotides and proteins made by ribosomal translation of l-amino acids. From the perspective of synthetic biology, however, particularly anabolic enzymes that could build the mirror-image counterparts of biological macromolecules such as l-DNA or l-RNA are lacking. Based on a convergent synthesis strategy, we have chemically produced and characterized a thermostable mirror-image polymerase that efficiently replicates and amplifies mirror-image (l)-DNA. This artificial enzyme, dubbed d-Dpo4-3C, is a mutant of Sulfolobus solfataricus DNA polymerase IV consisting of 352 d-amino acids. d-Dpo4-3C was reliably deployed in classical polymerase chain reactions (PCR) and it was used to assemble a first mirror-image gene coding for the protein Sso7d. We believe that this d-polymerase provides a valuable tool to further investigate the mysteries of biological (homo)chirality and to pave the way for potential novel life forms running on a mirror-image genome.


Asunto(s)
ADN Polimerasa beta/genética , ADN/biosíntesis , Proteínas Arqueales/genética , ADN/química , ADN Polimerasa beta/síntesis química , ADN Polimerasa beta/metabolismo , Proteínas de Unión al ADN/genética , Estabilidad de Enzimas , Mutación , Estereoisomerismo , Sulfolobus solfataricus/enzimología , Temperatura
7.
Phys Chem Chem Phys ; 19(35): 24115-24125, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28836637

RESUMEN

NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual 1H and 13C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.

8.
Bioconjug Chem ; 27(1): 47-53, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26670641

RESUMEN

The combination of pure chemical methods with enzymatic approaches offers a kit system with maximum flexibility for site-specifically tagging proteins with a broad variety of artificial structures. Trypsiligase, a recently introduced designer enzyme for both N- and C-terminal site-specific labeling of peptides and proteins, has been used to introduce click anchors into the human protein cyclophilin 18 and the antibody Fab fragments anti-TNFα and anti-Her2. The subsequent click reactions with tetrazine or norbornene moieties lead to quantitative conversions to the corresponding dihydropyridazine products, thereby forming a stable covalent linkage between the label and the protein of interest. With this technology, cyclophilin 18 has been efficiently modified with the fluorescent dansyl moiety and the pharmaceutically relevant polymer PEG exclusively at its N-terminus. With the same methodology, the Fab fragments of anti-TNFα and anti-Her2 were derivatized exclusively at their C-terminal ends with PEG and the fluorescent dye carboxyfluorescein in the case of anti-TNFα or with the cytotoxic payload DM1 in the case of anti-Her2, to form a homogeneous antibody-drug conjugate (ADC).


Asunto(s)
Química Clic , Fragmentos Fab de Inmunoglobulinas/química , Proteínas/química , Ciclofilinas/química , Enzimas/genética , Enzimas/metabolismo , Fluoresceínas/química , Colorantes Fluorescentes/química , Humanos , Inmunoconjugados/química , Fosfatidilcolinas/química , Polietilenglicoles/química , Receptor ErbB-2/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trastuzumab/química , Factor de Necrosis Tumoral alfa/inmunología
9.
Chemphyschem ; 17(13): 1961-8, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27061973

RESUMEN

The RF pulse scheme RN[N-CA HEHAHA]NH, which provides a convenient approach to the acquisition of different multidimensional chemical shift correlation NMR spectra leading to backbone resonance assignments, including those of the proline residues of intrinsically disordered proteins (IDPs), is experimentally demonstrated. Depending on the type of correlation data required, the method involves the generation of in-phase ((15) N)(x) magnetisation via different magnetisation transfer pathways such as H→N→CO→N, HA→CA→CO→N, H→N→CA→N and H→CA→N, the subsequent application of (15) N-(13) C(α) heteronuclear Hartmann-Hahn mixing over a period of ≈100 ms, chemical-shift labelling of relevant nuclei before and after the heteronuclear mixing step and amide proton detection in the acquisition dimension. It makes use of the favourable relaxation properties of IDPs and the presence of (1) JCαN and (2) JCαN couplings to achieve efficient correlation of the backbone resonances of each amino acid residue "i" with the backbone amide resonances of residues "i-1" and "i+1". It can be implemented in a straightforward way through simple modifications of the RF pulse schemes commonly employed in protein NMR studies. The efficacy of the approach is demonstrated using a uniformly ((15) N,(13) C) labelled sample of α-synuclein. The different possibilities for obtaining the amino-acid-type information, simultaneously with the connectivity data between the backbone resonances of sequentially neighbouring residues, have also been outlined.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , alfa-Sinucleína/química
10.
Chembiochem ; 15(8): 1096-100, 2014 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-24782039

RESUMEN

Bioconjugates, such as antibody-drug conjugates, have gained recent attention because of their increasing use in therapeutic and diagnostic applications. Commonly used conjugation reactions based upon chemoselective reagents exhibit a number of drawbacks: most of these reactions lack regio- and stereospecificity, thus resulting in loss of protein functionality due to random modifications. Enzymes provide an obvious solution to this problem, but the intrinsic (natural) substrate specificities of existing enzymes pose severe limitations to the kind of modifications that can be introduced. Here we describe the application of the novel trypsin variant trypsiligase for site-specific modification of the C terminus of a Fab antibody fragment via a stable peptide bond. The suitability of this designed biocatalyst was demonstrated by coupling the Her2-specific Fab to artificial functionalities of either therapeutic (PEG) or diagnostic (fluorescein) relevance. In both cases we obtained homogeneously modified Fab products bearing the artificial functionality exclusively at the desired position.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Tripsina/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Biocatálisis , Línea Celular Tumoral , Humanos , Estructura Molecular , Tripsina/química
11.
J Pept Sci ; 20(2): 128-36, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24357225

RESUMEN

Although proteases are capable of synthesizing peptide bonds via the reverse of proteolysis, they are not proficient at peptide fragment ligation. Further manipulations are needed to shift the native enzyme activity from the cleavage to the synthesis of peptides especially when longer peptides or even proteins are the target molecules of the reaction. This account reports on the synthetic potential of trypsin variants with engineered oxyanion holes mutated by proline mutations, which were designed to minimize proteolytic side reactions during peptide bond synthesis. From the six single and double proline-mutated trypsins, in particular, trypsinQ192P came out as the most promising biocatalyst enabling not only the ligation of cleavage-sensitive peptide fragments but also the selective N-terminal modification of a real protein substrate.


Asunto(s)
Ingeniería de Proteínas , Tripsina/química , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Proteolisis , Tripsina/genética
12.
Angew Chem Int Ed Engl ; 53(11): 3024-8, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24520050

RESUMEN

Although site-specific incorporation of artificial functionalities into proteins is an important tool in both basic and applied research, it can be a major challenge to protein chemists. Enzymatic protein modification is an attractive goal due to the inherent regio- and stereoselectivity of enzymes, yet their specificity remains a problem. As a result of the intrinsic reversibility of enzymatic reactions, proteinases can in principle catalyze ligation reactions. While this makes them attractive tools for site-specific protein bioconjugation, competing hydrolysis reactions limits their general use. Here we describe the design and application of a highly specific trypsin variant for the selective modification of N-terminal residues of diverse proteins with various reagents. The modification proceeds quantitatively under native (aqueous) conditions. We show that the variant has a disordered zymogen-like activation domain, effectively suppressing the hydrolysis reaction, which is converted to an active conformation in the presence of appropriate substrates.


Asunto(s)
Proteínas/metabolismo , Biocatálisis , Ciclofilinas/química , Ciclofilinas/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas/química , Proteolisis , Estereoisomerismo , Especificidad por Sustrato , Tripsina/química , Tripsina/metabolismo
13.
Animals (Basel) ; 14(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998042

RESUMEN

For protein evaluation of feedstuffs for ruminants, the Streptomyces griseus protease test provides a solely enzymatic method for estimating ruminal protein degradation. Since plant proteins are often structured in carbohydrate complexes, the use of carbohydrase during the test might improve its accuracy. It is advisable to co-incubate protease and carbohydrase, risking that the carbohydrase activity is reduced under the influence of the protease. The present study was conducted to investigate this impact by using α-amylase or the multi-enzyme complex Viscozym® L as carbohydrase. The detection of active protease was determined fluorescence photometrically using internally quenched fluorogenic substrates (IQFS). Cellulose, pectin, and starch degradation were determined spectrophotometrically using 3,5-dinitro salicylic acid as a colorimetric agent. The Streptomyces griseus protease mixture proved to be active for the selected IQFS immediately after the start of measurements (p < 0.05). Starch hydrolysis catalyzed by α-amylase or Viscozym® L, respectively, was decreased by co-incubation with protease mixture by maximal 3% or 37%, respectively, at 5 h incubation time (p > 0.05). Pectin and cellulose hydrolysis catalyzed by Viscozym® L, respectively, was not significantly influenced by co-incubation with a protease mixture (p > 0.05). Although a decrease in carbohydrase activity during co-incubation with Streptomyces griseus protease occurred, it was only numerical and might be counteracted by an adapted carbohydrase activity.

14.
Chemphyschem ; 14(18): 4044-64, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24222640

RESUMEN

During the last decade, ionic liquids (ILs) have revealed promising properties and applications in many research fields, including biotechnology and biological sciences. The focus of this contribution is to give a critical review of the phenomena observed and current knowledge of the interactions occurring on a molecular basis. As opposed to the huge advances made in understanding the properties of proteins in ILs, complementary investigations dealing with interactions between ILs and peptides or oligopeptides are underrepresented and are mostly only of phenomenological nature. However, the field has received more attention in the last few years. This Review features a meta-analysis of the available data and findings and should, therefore, provide a basis for a scientifically profound understanding of the nature and mechanisms of interactions between ILs and structured or nonstructured peptides. Fundamental aspects of the interactions between different peptides/oligopeptides and ILs are complemented by sections on the experimental (spectroscopy, structural biology) and theoretical (computational chemistry) possibilities to explain the phenomena reported so far in the literature. In effect, this should lead to the development of novel applications and support the understanding of IL-solute interactions in general.


Asunto(s)
Aminoácidos/química , Líquidos Iónicos/química , Aminoácidos/metabolismo , Cristalografía por Rayos X , Líquidos Iónicos/metabolismo , Iones/química , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
15.
Chemphyschem ; 13(7): 1836-44, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22488934

RESUMEN

The present work reports on an assessment of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for structural investigations of peptides dissolved in aqueous ionic liquids. Highly resolved one- and two-dimensional NMR spectra are obtained that allow for complete proton resonance assignments of both the peptides as solutes and the ionic liquids as solvents. Successful application of the HR-MAS method facilitates for the first time high-resolution NMR analysis of complex ionic liquid/peptide systems at the molecular level, mainly on the basis of chemical-shift changes.


Asunto(s)
Líquidos Iónicos/química , Oligopéptidos/química , Agua/química , Resonancia Magnética Nuclear Biomolecular , Solventes
16.
Biomol NMR Assign ; 16(2): 237-246, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35474152

RESUMEN

The dysbindin domain-containing protein 1 (DBNDD1) is a conserved protein among higher eukaryotes whose structure and function are poorly investigated so far. Here, we present the backbone and side chain nuclear magnetic resonance assignments for the human DBNDD1 protein. Our chemical-shift based secondary structure analysis reveals the human DBNDD1 as an intrinsically disordered protein.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Disbindina , Humanos , Proteínas Intrínsecamente Desordenadas/química , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína
17.
Biomol NMR Assign ; 15(2): 441-448, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34415548

RESUMEN

Even though the human genome project showed that our DNA contains a mere 20,000 to 25,000 protein coding genes, an unexpectedly large number of these proteins remain functionally uncharacterized. A structural characterization of these "unknown" proteins may help to identify possible cellular tasks. We therefore used a combination of bioinformatics and nuclear magnetic resonance spectroscopy to structurally de-orphanize one of these gene products, the 108 amino acid human uncharacterized protein CXorf51A. Both our bioinformatics analysis as well as the [Formula: see text]H, [Formula: see text]C, [Formula: see text]N backbone and near-complete side-chain chemical shift assignments indicate that it is an intrinsically disordered protein.


Asunto(s)
Proteínas Intrínsecamente Desordenadas
18.
Biomol NMR Assign ; 15(1): 91-97, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33263927

RESUMEN

Death-associated protein 1 (DAP1) is a proline-rich cytoplasmatic protein highly conserved in most eukaryotes. It has been reported to be involved in controlling cell growth and migration, autophagy and apoptosis. The presence of human DAP1 is associated to a favourable prognosis in different types of cancer. Here we describe the almost complete [Formula: see text], [Formula: see text], and [Formula: see text] chemical shift assignments of the human DAP1. The limited spectral dispersion, mainly in the [Formula: see text] region, and the lack of defined secondary structure elements, predicted based on chemical shifts, identifies human DAP1 as an intrinsically disordered protein (IDP). This work lays the foundation for further structural investigations, dynamic studies, mapping of potential interaction partners or drug screening and development.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Resonancia Magnética Nuclear Biomolecular , Proliferación Celular , Proteínas Intrínsecamente Desordenadas
19.
Biochemistry ; 49(39): 8626-35, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20806779

RESUMEN

The reliable identification of interacting structural elements without prior isolation of interacting proteins can be achieved by using the novel fluorescence resonance energy transfer-coupled IANUS (Induced orgANization of strUcture by matrix-assisted togethernesS) peptide array. Here we report that parvulin 10 (Par10), an abundant Escherichia coli peptidyl prolyl cis/trans isomerase (PPIase), physically interacts with the alkyl hydroperoxide reductase subunit C (AhpC) in bacterial cell extracts, as determined by affinity chromatography and chemical cross-linking experiments. A Par10-negative E. coli strain showed increased sensitivity toward hydrogen peroxide compared to the wild-type strain. The IANUS experiment revealed three segments of the peroxiredoxin AhpC chain as potential Par10 binding partners. Inhibition of the Par10 PPIase activity by the corresponding AhpC-derived peptides as well as NMR data of (15)N-labeled Par10 in the presence of the AhpC(115-132) peptide or full-length AhpC confirmed that the putative Par10 active site is involved in the Par10-AhpC interaction. Moreover, NMR-based docking calculations as well as NOESY exchange peaks between the proline cis and trans isomers revealed the Asp125-Pro126 moiety of the AhpC segment G115-A132 as a substrate for Par10 enzymatic action. On the basis of these data, we conclude that Par10 catalytic activity is involved in the cellular protection against oxidative stress.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Transferencia Resonante de Energía de Fluorescencia/métodos , Isomerasa de Peptidilprolil/metabolismo , Peroxirredoxinas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Secuencia de Aminoácidos , Sitios de Unión , Escherichia coli/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estrés Oxidativo , Isomerasa de Peptidilprolil/química , Peroxirredoxinas/química , Análisis por Matrices de Proteínas/métodos , Unión Proteica
20.
Biomol NMR Assign ; 14(2): 163-168, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32240523

RESUMEN

The brain and acute leukemia cytoplasmic (BAALC; UniProt entry Q8WXS3) is a 180-residue-long human protein having six known isoforms. BAALC is expressed in either hematopoietic or neuroectodermal cells and its specific function is still to be revealed. However, as a presumably membrane-anchored protein at the cytoplasmic side it is speculated that BAALC exerts its function at the postsynaptic densities of certain neurons and might play a role in developing cytogenetically normal acute myeloid leukemia (CN-AML) when it is highly overexpressed by myeloid or lymphoid progenitor cells. In order to better understand the physiological role of BAALC and to provide the basis for a further molecular characterization of BAALC, we report here the 1H, 13C, and 15N resonance assignments for the backbone nuclei of its longest hematopoietic isoform (isoform 1). In addition, we present a 1HN and 15NH chemical shift comparison of BAALC with its shortest, neuroectodermal isoform (isoform 6) which shows only minor changes in the 1H and 15N chemical shifts.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Proteínas de Neoplasias/análisis , Espectroscopía de Protones por Resonancia Magnética , Secuencia de Aminoácidos , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Neoplasias/química , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Isoformas de Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA