RESUMEN
Mutations in the X-linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder. MECP2 is a transcriptional modulator that finely regulates the expression of many genes, specifically in the central nervous system. Several studies have functionally linked the loss of MECP2 in astrocytes to the appearance and progression of the RTT phenotype in a non-cell autonomous manner and mechanisms are still unknown. Here, we used primary astroglial cells from Mecp2-deficient (KO) pups to identify deregulated secreted proteins. Using a differential quantitative proteomic analysis, twenty-nine proteins have been identified and four were confirmed by Western blotting with new samples as significantly deregulated. To further verify the functional relevance of these proteins in RTT, we tested their effects on the dendritic morphology of primary cortical neurons from Mecp2 KO mice that are known to display shorter dendritic processes. Using Sholl analysis, we found that incubation with Lcn2 or Lgals3 for 48 h was able to significantly increase the dendritic arborization of Mecp2 KO neurons. To our knowledge, this study, through secretomic analysis, is the first to identify astroglial secreted proteins involved in the neuronal RTT phenotype in vitro, which could open new therapeutic avenues for the treatment of Rett syndrome.
Asunto(s)
Astrocitos/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteínas del Tejido Nervioso/metabolismo , Neurosecreción , Síndrome de Rett/metabolismo , Animales , Astrocitos/fisiología , Modelos Animales de Enfermedad , Eliminación de Gen , Regulación de la Expresión Génica , Masculino , Ratones , Proteómica , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologíaRESUMEN
Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). RTT is the second most prevalent cause of intellectual disability in girls and there is currently no cure for the disease. The finding that the deficits caused by the loss of Mecp2 are reversible in the mouse has bolstered interest in gene therapy as a cure for RTT. In order to assess the feasibility of gene therapy in a RTT mouse model, and in keeping with translational goals, we investigated the efficacy of a self-complementary AAV9 vector expressing a codon-optimized version of Mecp2 (AAV9-MCO) delivered via a systemic approach in early symptomatic Mecp2-deficient (KO) mice. Our results show that AAV9-MCO administered at a dose of 2×1011 viral genome (vg)/mouse was able to significantly increase survival and weight gain, and delay the occurrence of behavioral deficits. Apneas, which are one of the core RTT breathing deficits, were significantly decreased to WT levels in Mecp2 KO mice after AAV9-MCO administration. Semi-quantitative analysis showed that AAV9-MCO administration in Mecp2 KO mice resulted in 10 to 20% Mecp2 immunopositive cells compared to WT animals, with the highest Mecp2 expression found in midbrain regions known to regulate cardio-respiratory functions. In addition, we also found a cell autonomous increase in tyrosine hydroxylase levels in the A1C1 and A2C2 catecholaminergic Mecp2+ neurons in treated Mecp2 KO mice, which may partly explain the beneficial effect of AAV9-MCO administration on apneas occurrence.
Asunto(s)
Terapia Genética , Proteína 2 de Unión a Metil-CpG/administración & dosificación , Síndrome de Rett/terapia , Aminas , Animales , Apnea/metabolismo , Apnea/patología , Apnea/prevención & control , Codón , Ácidos Ciclohexanocarboxílicos , Dependovirus , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Gabapentina , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patología , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Respiración , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Análisis de Supervivencia , Tirosina 3-Monooxigenasa/metabolismo , Aumento de Peso , Ácido gamma-AminobutíricoRESUMEN
BAP31 is one of the most abundant endoplasmic reticulum (ER) membrane proteins. It is a chaperone protein involved in several pathways, including ER-associated degradation, export of ER proteins to the Golgi apparatus, and programmed cell death. BAP31 is encoded by BCAP31, located in human Xq28 and highly expressed in neurons. We identified loss-of-function mutations in BCAP31 in seven individuals from three families. These persons suffered from motor and intellectual disabilities, dystonia, sensorineural deafness, and white-matter changes, which together define an X-linked syndrome. In the primary fibroblasts of affected individuals, we found that BCAP31 deficiency altered ER morphology and caused a disorganization of the Golgi apparatus in a significant proportion of cells. Contrary to what has been described with transient-RNA-interference experiments, we demonstrate that constitutive BCAP31 deficiency does not activate the unfolded protein response or cell-death effectors. Rather, our data demonstrate that the lack of BAP31 disturbs ER metabolism and impacts the Golgi apparatus, highlighting an important role for BAP31 in ER-to-Golgi crosstalk. These findings provide a molecular basis for a Mendelian syndrome and link intracellular protein trafficking to severe congenital brain dysfunction and deafness.
Asunto(s)
Sordera/genética , Distonía/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Aparato de Golgi/patología , Proteínas de la Membrana/genética , Mutación/genética , Vaina de Mielina/patología , Forma de la Célula , Niño , Preescolar , Sordera/complicaciones , Distonía/complicaciones , Femenino , Fibroblastos/patología , Fibroblastos/ultraestructura , Predisposición Genética a la Enfermedad , Aparato de Golgi/ultraestructura , Humanos , Lactante , Masculino , Vaina de Mielina/ultraestructura , Linaje , Fenotipo , Adulto JovenRESUMEN
Mecp2 deficiency or overexpression causes a wide spectrum of neurological diseases in humans among which Rett Syndrome is the prototype. Pathogenic mechanisms are thought to involve transcriptional deregulation of target genes such as Bdnf together with defects in the general transcriptional program of affected cells. Here we found that two master genes, Huntingtin (Htt) and huntingtin-associated protein (Hap1), involved in the control of Bdnf axonal transport, are altered in the brain of Mecp2-deficient mice. We also revealed an in vivo defect of Bdnf transport throughout the cortico striatal pathway of Mecp2-deficient animals. We found that the velocity of Bdnf-containing vesicles is reduced in vitro in the Mecp2-deficient axons and this deficit can be rescued by the re-expression of Mecp2. The defect in axonal transport is not restricted to Bdnf since transport of the amyloid precursor protein (App) that is Htt and Hap1-dependent is also altered. Finally, treating Mecp2-deficient mice with cysteamine, a molecule increasing the secretion of Bdnf vesicles, improved the lifespan and reduced motor defects, suggesting a new therapeutic strategy for Rett syndrome.
Asunto(s)
Transporte Axonal/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/genética , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Proteína Huntingtina , Inmunohistoquímica , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , TransfecciónRESUMEN
Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the MECP2 gene, in which older patients often develop parkinsonian features. Although Mecp2 has been shown to modulate the catecholaminergic metabolism of the RTT mouse model, little is known about the central dopaminergic neurons. Here we found that the progression of the motor dysfunction in the Mecp2-deficient mouse becomes more severe between 4 and 9 weeks of age. We then studied the phenotype of the dopaminergic neurons of the substantia nigra pars compacta (SNpc). We found a major reduction in the number of tyrosine hydroxylase (Th)-expressing neurons, as well as a reduction in their soma size, by 5 weeks of age. We showed that this deficit is not due to apoptosis and that the remaining neurons express a mature dopaminergic phenotype. A reduction in the Th-staining intensity was also found in the caudate-putamen (CPu), the main dopaminergic target for SNpc. We found that the amount of activated-Th (pSer40-Th) is slightly reduced at 5 weeks of age in the Mecp2-deficient mouse, but that this amount is affected more importantly by 9 weeks of age. Neurochemical measurements revealed a significant reduction of dopamine content at 5 and 9 weeks of age in the CPu whereas SNpc contents were preserved. Finally, we found that chronic L-Dopa treatment improved the motor deficits previously identified. Altogether, our findings demonstrate that Mecp2-deficiency induces nigrostriatal deficits, and they offer a new perspective to better understand the origin of motor dysfunction in RTT.
Asunto(s)
Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/patología , Síndrome de Rett/fisiopatología , Sustancia Negra/patología , Sustancia Negra/fisiopatología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Dopamina/deficiencia , Masculino , Proteína 2 de Unión a Metil-CpG/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Fenotipo , Síndrome de Rett/genética , Sustancia Negra/metabolismoRESUMEN
PURPOSE: STXBP1 (MUNC18-1) mutations have been associated with various types of epilepsies, mostly beginning early in life. To refine the phenotype associated with STXBP1 aberrations in early onset epileptic syndromes, we studied this gene in a cohort of patients with early onset epileptic encephalopathy. METHODS: STXBP1 was screened in a multicenter cohort of 52 patients with early onset epilepsy (first seizure observed before the age of 3 months), no cortical malformation on brain magnetic resonance imaging (MRI), and negative metabolic screening. Three groups of patients could be distinguished in this cohort: (1) Ohtahara syndromes (n = 38); (2) early myoclonic encephalopathies (n = 7); and (3) early onset epileptic encephalopathies that did not match any familiar syndrome (n = 7). None of the patients displayed any cortical malformation on brain MRI and all were screened through multiple video-electroencephalography (EEG) recordings for a time period spanning from birth to their sixth postnatal month. Subsequently, patients had standard EEG or video-EEG recordings. KEY FINDINGS: We found five novel STXBP1 mutations in patients for whom video-EEG recordings could be sampled from the beginning of the disease. All patients with a mutation displayed Ohtahara syndrome, since most early seizures could be classified as epileptic spasms and since the silent EEG periods were on average shorter than bursts. However, each patient in addition displayed a particular clinical and EEG feature: In two patients, early seizures were clonic, with very early EEG studies exhibiting relatively low amplitude bursts of activity before progressing into a typical suppression-burst pattern, whereas the three other patients displayed epileptic spasms associated with typical suppression-burst patterns starting from the early recordings. Epilepsy dramatically improved after 6 months and finally disappeared before the end of the first year of life for four patients; the remaining one patient had few seizures until 18 months of age. In parallel, EEG paroxysmal abnormalities disappeared in three patients and decreased in two, giving place to continuous activity with fast rhythms. Each patient displayed frequent nonepileptic movement disorders that could easily be mistaken for epileptic seizures. These movements could be observed as early as the neonatal period and, unlike seizures, persisted during all the follow-up period. SIGNIFICANCE: We confirm that STXBP1 is a major gene to screen in cases of Ohtahara syndrome, since it is mutated in >10% of the Ohtahara patients within our cohort. This gene should particularly be tested in the case of a surprising evolution of the patient condition if epileptic seizures and EEG paroxysmal activity disappear and are replaced by fast rhythms after the end of the first postnatal year.