Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 55(10): 1940-1952.e5, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223726

RESUMEN

T cells mediate antigen-specific immune responses to disease through the specificity and diversity of their clonotypic T cell receptors (TCRs). Determining the spatial distributions of T cell clonotypes in tissues is essential to understanding T cell behavior, but spatial sequencing methods remain unable to profile the TCR repertoire. Here, we developed Slide-TCR-seq, a 10-µm-resolution method, to sequence whole transcriptomes and TCRs within intact tissues. We confirmed the ability of Slide-TCR-seq to map the characteristic locations of T cells and their receptors in mouse spleen. In human lymphoid germinal centers, we identified spatially distinct TCR repertoires. Profiling T cells in renal cell carcinoma and melanoma specimens revealed heterogeneous immune responses: T cell states and infiltration differed intra- and inter-clonally, and adjacent tumor and immune cells exhibited distinct gene expression. Altogether, our method yields insights into the spatial relationships between clonality, neighboring cell types, and gene expression that drive T cell responses.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Transcriptoma , Inmunidad Adaptativa/genética , Animales , Humanos , Ratones , Linfocitos T
3.
bioRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39149311

RESUMEN

Tissue organization arises from the coordinated molecular programs of cells. Spatial genomics maps cells and their molecular programs within the spatial context of tissues. However, current methods measure spatial information through imaging or direct registration, which often require specialized equipment and are limited in scale. Here, we developed an imaging-free spatial transcriptomics method that uses molecular diffusion patterns to computationally reconstruct spatial data. To do so, we utilize a simple experimental protocol on two dimensional barcode arrays to establish an interaction network between barcodes via molecular diffusion. Sequencing these interactions generates a high dimensional matrix of interactions between different spatial barcodes. Then, we perform dimensionality reduction to regenerate a two-dimensional manifold, which represents the spatial locations of the barcode arrays. Surprisingly, we found that the UMAP algorithm, with minimal modifications can faithfully successfully reconstruct the arrays. We demonstrated that this method is compatible with capture array based spatial transcriptomics/genomics methods, Slide-seq and Slide-tags, with high fidelity. We systematically explore the fidelity of the reconstruction through comparisons with experimentally derived ground truth data, and demonstrate that reconstruction generates high quality spatial genomics data. We also scaled this technique to reconstruct high-resolution spatial information over areas up to 1.2 centimeters. This computational reconstruction method effectively converts spatial genomics measurements to molecular biology, enabling spatial transcriptomics with high accessibility, and scalability.

4.
Nat Commun ; 15(1): 32, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167262

RESUMEN

Single-cell transcriptomics has become the definitive method for classifying cell types and states, and can be augmented with genotype information to improve cell lineage identification. Due to constraints of short-read sequencing, current methods to detect natural genetic barcodes often require cumbersome primer panels and early commitment to targets. Here we devise a flexible long-read sequencing workflow and analysis pipeline, termed nanoranger, that starts from intermediate single-cell cDNA libraries to detect cell lineage-defining features, including single-nucleotide variants, fusion genes, isoforms, sequences of chimeric antigen and TCRs. Through systematic analysis of these classes of natural 'barcodes', we define the optimal targets for nanoranger, namely those loci close to the 5' end of highly expressed genes with transcript lengths shorter than 4 kB. As proof-of-concept, we apply nanoranger to longitudinal tracking of subclones of acute myeloid leukemia (AML) and describe the heterogeneous isoform landscape of thousands of marrow-infiltrating immune cells. We propose that enhanced cellular genotyping using nanoranger can improve the tracking of single-cell tumor and immune cell co-evolution.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia Mieloide Aguda , Humanos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Fenotipo , Perfilación de la Expresión Génica/métodos
5.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405900

RESUMEN

Understanding how intra-tumoral immune populations coordinate to generate anti-tumor responses following therapy can guide precise treatment prioritization. We performed systematic dissection of an established adoptive cellular therapy, donor lymphocyte infusion (DLI), by analyzing 348,905 single-cell transcriptomes from 74 longitudinal bone-marrow samples of 25 patients with relapsed myeloid leukemia; a subset was evaluated by protein-based spatial analysis. In acute myelogenous leukemia (AML) responders, diverse immune cell types within the bone-marrow microenvironment (BME) were predicted to interact with a clonally expanded population of ZNF683 + GZMB + CD8+ cytotoxic T lymphocytes (CTLs) which demonstrated in vitro specificity for autologous leukemia. This population, originating predominantly from the DLI product, expanded concurrently with NK and B cells. AML nonresponder BME revealed a paucity of crosstalk and elevated TIGIT expression in CD8+ CTLs. Our study highlights recipient BME differences as a key determinant of effective anti-leukemia response and opens new opportunities to modulate cell-based leukemia-directed therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA