Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 143(4): 564-78, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21074048

RESUMEN

Polyglutamylation is a posttranslational modification that generates glutamate side chains on tubulins and other proteins. Although this modification has been shown to be reversible, little is known about the enzymes catalyzing deglutamylation. Here we describe the enzymatic mechanism of protein deglutamylation by members of the cytosolic carboxypeptidase (CCP) family. Three enzymes (CCP1, CCP4, and CCP6) catalyze the shortening of polyglutamate chains and a fourth (CCP5) specifically removes the branching point glutamates. In addition, CCP1, CCP4, and CCP6 also remove gene-encoded glutamates from the carboxyl termini of proteins. Accordingly, we show that these enzymes convert detyrosinated tubulin into Δ2-tubulin and also modify other substrates, including myosin light chain kinase 1. We further analyze Purkinje cell degeneration (pcd) mice that lack functional CCP1 and show that microtubule hyperglutamylation is directly linked to neurodegeneration. Taken together, our results reveal that controlling the length of the polyglutamate side chains on tubulin is critical for neuronal survival.


Asunto(s)
Carboxipeptidasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Degeneración Nerviosa/metabolismo , Ácido Poliglutámico/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Supervivencia Celular , Cerebelo/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Bulbo Olfatorio/patología , Alineación de Secuencia , Tubulina (Proteína)/metabolismo
2.
Mol Psychiatry ; 28(9): 3994-4010, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37833406

RESUMEN

The pathogenesis of schizophrenia is believed to involve combined dysfunctions of many proteins including microtubule-associated protein 6 (MAP6) and Kv3.1 voltage-gated K+ (Kv) channel, but their relationship and functions in behavioral regulation are often not known. Here we report that MAP6 stabilizes Kv3.1 channels in parvalbumin-positive (PV+ ) fast-spiking GABAergic interneurons, regulating behavior. MAP6-/- and Kv3.1-/- mice display similar hyperactivity and avoidance reduction. Their proteins colocalize in PV+ interneurons and MAP6 deletion markedly reduces Kv3.1 protein level. We further show that two microtubule-binding modules of MAP6 bind the Kv3.1 tetramerization domain with high affinity, maintaining the channel level in both neuronal soma and axons. MAP6 knockdown by AAV-shRNA in the amygdala or the hippocampus reduces avoidance or causes hyperactivity and recognition memory deficit, respectively, through elevating projection neuron activity. Finally, knocking down Kv3.1 or disrupting the MAP6-Kv3.1 binding in these brain regions causes avoidance reduction and hyperactivity, consistent with the effects of MAP6 knockdown. Thus, disrupting this conserved cytoskeleton-membrane interaction in fast-spiking neurons causes different degrees of functional vulnerability in various neural circuits.


Asunto(s)
Neuronas , Canales de Potasio con Entrada de Voltaje , Ratones , Animales , Neuronas/metabolismo , Canales de Potasio con Entrada de Voltaje/farmacología , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Emociones , Canales de Potasio Shaw/metabolismo
3.
Brain ; 145(7): 2486-2506, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35148384

RESUMEN

Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer's disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-ß peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-ß peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-ß peptide-induced synaptic damage and that this balance is lost in Alzheimer's disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Tubulina (Proteína) , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Ratones , Microtúbulos , Péptidos/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
4.
EMBO J ; 37(23)2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30420556

RESUMEN

Posttranslational modifications of tubulin are emerging regulators of microtubule functions. We have shown earlier that upregulated polyglutamylation is linked to rapid degeneration of Purkinje cells in mice with a mutation in the deglutamylating enzyme CCP1. How polyglutamylation leads to degeneration, whether it affects multiple neuron types, or which physiological processes it regulates in healthy neurons has remained unknown. Here, we demonstrate that excessive polyglutamylation induces neurodegeneration in a cell-autonomous manner and can occur in many parts of the central nervous system. Degeneration of selected neurons in CCP1-deficient mice can be fully rescued by simultaneous knockout of the counteracting polyglutamylase TTLL1. Excessive polyglutamylation reduces the efficiency of neuronal transport in cultured hippocampal neurons, suggesting that impaired cargo transport plays an important role in the observed degenerative phenotypes. We thus establish polyglutamylation as a cell-autonomous mechanism for neurodegeneration that might be therapeutically accessible through manipulation of the enzymes that control this posttranslational modification.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Células de Purkinje/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Transporte Biológico Activo/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Péptidos/genética , Células de Purkinje/patología , Tubulina (Proteína)/genética
5.
Hum Mol Genet ; 28(20): 3391-3405, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31363758

RESUMEN

Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.


Asunto(s)
Encéfalo/anomalías , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neuronas/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Proteínas Portadoras/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Femenino , Humanos , Immunoblotting , Imagen por Resonancia Magnética , Ratones , Microcefalia/genética , Microcefalia/metabolismo , Tirosina/metabolismo
6.
J Cell Sci ; 132(3)2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30635446

RESUMEN

Sperm cells are highly specialized mammalian cells, and their biogenesis requires unique intracellular structures. Perturbation of spermatogenesis often leads to male infertility. Here, we assess the role of a post-translational modification of tubulin, glutamylation, in spermatogenesis. We show that mice lacking the tubulin deglutamylase CCP5 (also known as AGBL5) do not form functional sperm. In these mice, spermatids accumulate polyglutamylated tubulin, accompanied by the occurrence of disorganized microtubule arrays, in particular in the sperm manchette. Spermatids further fail to re-arrange their intracellular space and accumulate organelles and cytosol, while nuclei condense normally. Strikingly, spermatids lacking CCP5 show supernumerary centrioles, suggesting that glutamylation could control centriole duplication. We show that most of these observed defects are also present in mice in which CCP5 is deleted only in the male germ line, strongly suggesting that they are germ-cell autonomous. Our findings reveal that polyglutamylation is, beyond its known importance for sperm flagella, an essential regulator of several microtubule-based functions during spermatogenesis. This makes enzymes involved in glutamylation prime candidates for being genes involved in male sterility.


Asunto(s)
Carboxipeptidasas/genética , Infertilidad Masculina/genética , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Espermátides/metabolismo , Espermatogénesis/genética , Tubulina (Proteína)/metabolismo , Animales , Carboxipeptidasas/deficiencia , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Centriolos/metabolismo , Centriolos/patología , Centriolos/ultraestructura , Citosol/metabolismo , Citosol/ultraestructura , Ácido Glutámico/metabolismo , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Noqueados , Microtúbulos/patología , Microtúbulos/ultraestructura , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/patología , Cola del Espermatozoide/ultraestructura , Espermátides/patología , Espermátides/ultraestructura , Tubulina (Proteína)/genética
7.
Eur J Neurosci ; 46(11): 2754-2767, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29094416

RESUMEN

MAP6 proteins were first described as microtubule-stabilizing agents, whose properties were thought to be essential for neuronal development and maintenance of complex neuronal networks. However, deletion of all MAP6 isoforms in MAP6 KO mice does not lead to dramatic morphological aberrations of the brain but rather to alterations in multiple neurotransmissions and severe behavioural impairments. A search for protein partners of MAP6 proteins identified Tctex1 - a dynein light chain with multiple non-microtubule-related functions. The involvement of Tctex1 in calcium signalling led to investigate it in MAP6 KO neurons. In this study, we show that functional Cav 2.2/N-type calcium channels are deficient in MAP6 KO neurons, due to improper location. We also show that MAP6 proteins interact directly with both Tctex1 and the C-terminus of Cav 2.2/N-type calcium channels. A balance of these two interactions seems to be crucial for MAP6 to modulate calcium signalling in neurons.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Señalización del Calcio/fisiología , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Femenino , Hipocampo/citología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica
8.
J Cell Sci ; 128(7): 1294-307, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25673876

RESUMEN

Cilia and flagella are microtubule-based organelles present at the surface of most cells, ranging from protozoa to vertebrates, in which these structures are implicated in processes from morphogenesis to cell motility. In vertebrate neurons, microtubule-associated MAP6 proteins stabilize cold-resistant microtubules through their Mn and Mc modules, and play a role in synaptic plasticity. Although centrioles, cilia and flagella have cold-stable microtubules, MAP6 proteins have not been identified in these organelles, suggesting that additional proteins support this role in these structures. Here, we characterize human FAM154A (hereafter referred to as hSAXO1) as the first human member of a widely conserved family of MAP6-related proteins specific to centrioles and cilium microtubules. Our data demonstrate that hSAXO1 binds specifically to centriole and cilium microtubules. We identify, in vivo and in vitro, hSAXO1 Mn modules as responsible for microtubule binding and stabilization as well as being necessary for ciliary localization. Finally, overexpression and knockdown studies show that hSAXO1 modulates axoneme length. Taken together, our findings suggest a fine regulation of hSAXO1 localization and important roles in cilium biogenesis and function.


Asunto(s)
Cilios/metabolismo , Proteínas del Ojo/metabolismo , Microtúbulos/metabolismo , Axonema/genética , Axonema/metabolismo , Centriolos/genética , Centriolos/metabolismo , Cilios/química , Cilios/genética , Proteínas del Ojo/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/genética
9.
J Biol Chem ; 288(34): 24910-22, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23831686

RESUMEN

Microtubules are highly dynamic αß-tubulin polymers. In vitro and in living cells, microtubules are most often cold- and nocodazole-sensitive. When present, the MAP6/STOP family of proteins protects microtubules from cold- and nocodazole-induced depolymerization but the molecular and structure determinants by which these proteins stabilize microtubules remain under debate. We show here that a short protein fragment from MAP6-N, which encompasses its Mn1 and Mn2 modules (MAP6(90-177)), recapitulates the function of the full-length MAP6-N protein toward microtubules, i.e. its ability to stabilize microtubules in vitro and in cultured cells in ice-cold conditions or in the presence of nocodazole. We further show for the first time, using biochemical assays and NMR spectroscopy, that these effects result from the binding of MAP6(90-177) to microtubules with a 1:1 MAP6(90-177):tubulin heterodimer stoichiometry. NMR data demonstrate that the binding of MAP6(90-177) to microtubules involve its two Mn modules but that a single one is also able to interact with microtubules in a closely similar manner. This suggests that the Mn modules represent each a full microtubule binding domain and that MAP6 proteins may stabilize microtubules by bridging tubulin heterodimers from adjacent protofilaments or within a protofilament. Finally, we demonstrate that Ca(2+)-calmodulin competes with microtubules for MAP6(90-177) binding and that the binding mode of MAP6(90-177) to microtubules and Ca(2+)-calmodulin involves a common stretch of amino acid residues on the MAP6(90-177) side. This result accounts for the regulation of microtubule stability in cold condition by Ca(2+)-calmodulin.


Asunto(s)
Calmodulina/química , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Tubulina (Proteína)/química , Animales , Calmodulina/genética , Calmodulina/metabolismo , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Multimerización de Proteína/fisiología , Estructura Terciaria de Proteína , Ratas , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
10.
J Biol Chem ; 287(42): 35127-35138, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22904321

RESUMEN

Microtubules are dynamic structures that present the peculiar characteristic to be ice-cold labile in vitro. In vivo, microtubules are protected from ice-cold induced depolymerization by the widely expressed MAP6/STOP family of proteins. However, the mechanism by which MAP6 stabilizes microtubules at 4 °C has not been identified. Moreover, the microtubule cold sensitivity and therefore the needs for microtubule stabilization in the wide range of temperatures between 4 and 37 °C are unknown. This is of importance as body temperatures of animals can drop during hibernation or torpor covering a large range of temperatures. Here, we show that in the absence of MAP6, microtubules in cells below 20 °C rapidly depolymerize in a temperature-dependent manner whereas they are stabilized in the presence of MAP6. We further show that in cells, MAP6-F binding to and stabilization of microtubules is temperature- dependent and very dynamic, suggesting a direct effect of the temperature on the formation of microtubule/MAP6 complex. We also demonstrate using purified proteins that MAP6-F binds directly to microtubules through its Mc domain. This binding is temperature-dependent and coincides with progressive conformational changes of the Mc domain as revealed by circular dichroism. Thus, MAP6 might serve as a temperature sensor adapting its conformation according to the temperature to maintain the cellular microtubule network in organisms exposed to temperature decrease.


Asunto(s)
Frío , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Células HeLa , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Células 3T3 NIH , Estructura Terciaria de Proteína
11.
J Cell Biol ; 222(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36512346

RESUMEN

The detyrosination/tyrosination cycle of α-tubulin is critical for proper cell functioning. VASH1-SVBP and VASH2-SVBP are ubiquitous enzymes involved in microtubule detyrosination, whose mode of action is little known. Here, we show in reconstituted systems and cells that VASH1-SVBP and VASH2-SVBP drive the global and local detyrosination of microtubules, respectively. We solved the cryo-electron microscopy structure of VASH2-SVBP bound to microtubules, revealing a different microtubule-binding configuration of its central catalytic region compared to VASH1-SVBP. We show that the divergent mode of detyrosination between the two enzymes is correlated with the microtubule-binding properties of their disordered N- and C-terminal regions. Specifically, the N-terminal region is responsible for a significantly longer residence time of VASH2-SVBP on microtubules compared to VASH1-SVBP. We suggest that this VASH region is critical for microtubule detachment and diffusion of VASH-SVBP enzymes on lattices. Our results suggest a mechanism by which VASH1-SVBP and VASH2-SVBP could generate distinct microtubule subpopulations and confined areas of detyrosinated lattices to drive various microtubule-based cellular functions.


Asunto(s)
Proteínas Angiogénicas , Proteínas Portadoras , Proteínas de Ciclo Celular , Microtúbulos , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Proteínas Angiogénicas/metabolismo
12.
J Biol Chem ; 285(26): 19900-9, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20385553

RESUMEN

Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate are ubiquitous calcium-mobilizing messengers produced by the same family of multifunctional enzymes, the ADP-ribosyl cyclases. Not all ADP-ribosyl cyclases have been identified, and how production of different messengers is achieved is incompletely understood. Here, we report the cloning and characterization of a novel ADP-ribosyl cyclase (SpARC4) from the sea urchin, a key model organism for the study of calcium-signaling pathways. Like several other members of the ADP-ribosyl cyclase superfamily, SpARC4 is a glycoprotein targeted to the plasma membrane via a glycosylphosphatidylinositol anchor. However, unlike most other members, SpARC4 shows a remarkable preference for producing cyclic ADP-ribose over nicotinic acid adenine dinucleotide phosphate. Mutation of a single residue (tyrosine 142) within a noncanonical active site reversed this striking preference. Our data highlight further diversification of this unusual enzyme family, provide mechanistic insight into multifunctionality, and suggest that different ADP-ribosyl cyclases are fine-tuned to produce specific calcium-mobilizing messengers.


Asunto(s)
ADP-Ribosil Ciclasa/metabolismo , ADP-Ribosa Cíclica/metabolismo , NADP/análogos & derivados , ADP-Ribosil Ciclasa/genética , Secuencia de Aminoácidos , Animales , Blastómeros/citología , Blastómeros/metabolismo , Western Blotting , Línea Celular , Clonación Molecular , Humanos , Cinética , Microinyecciones , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , NADP/metabolismo , Homología de Secuencia de Aminoácido , Strongylocentrotus purpuratus/enzimología , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/metabolismo , Transfección , Tirosina/genética , Tirosina/metabolismo , Xenopus laevis/embriología
13.
Dev Neurobiol ; 81(3): 253-272, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33325152

RESUMEN

Microtubules (MTs) are an essential component of the neuronal cytoskeleton; they are involved in various aspects of neuron development, maintenance, and functions including polarization, synaptic plasticity, and transport. Neuronal MTs are highly heterogeneous due to the presence of multiple tubulin isotypes and extensive post-translational modifications (PTMs). These PTMs-most notably detyrosination, acetylation, and polyglutamylation-have emerged as important regulators of the neuronal microtubule cytoskeleton. With this review, we summarize what is currently known about the impact of tubulin PTMs on microtubule dynamics, neuronal differentiation, plasticity, and transport as well as on brain function in normal and pathological conditions, in particular during neuro-degeneration. The main therapeutic approaches to neuro-diseases based on the modulation of tubulin PTMs are also summarized. Overall, the review indicates how tubulin PTMs can generate a large number of functionally specialized microtubule sub-networks, each of which is crucial to specific neuronal features.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Acetilación , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismo
14.
Front Mol Neurosci ; 14: 665693, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025352

RESUMEN

The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs-including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);-were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6's effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.

15.
Elife ; 102021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860155

RESUMEN

Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-associated protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the collapsin response mediator protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within detergent-resistant membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.


Asunto(s)
Fórnix/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Semaforinas/genética , Transducción de Señal , Animales , Femenino , Fórnix/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Semaforinas/metabolismo
16.
Sci Adv ; 6(14): eaaz4344, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270043

RESUMEN

Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work. Here, we show that MAP6, previously known to confer cold stability to microtubules, promotes growth. More unexpectedly, MAP6 localizes in the lumen of microtubules, induces the microtubules to coil into a left-handed helix, and forms apertures in the lattice, likely to relieve mechanical stress. These features have not been seen in microtubules before and could play roles in maintaining axonal width or providing flexibility in the face of compressive forces during development.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Ratones , Microtúbulos/metabolismo , Modelos Biológicos , Neuritas , Neuronas/ultraestructura , Unión Proteica , Transporte de Proteínas
17.
Nat Struct Mol Biol ; 26(7): 571-582, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31235911

RESUMEN

Vasohibins are tubulin tyrosine carboxypeptidases that are important in neuron physiology. We examined the crystal structures of human vasohibin 1 and 2 in complex with small vasohibin-binding protein (SVBP) in the absence and presence of different inhibitors and a C-terminal α-tubulin peptide. In combination with functional data, we propose that SVBP acts as an activator of vasohibins. An extended groove and a distinctive surface residue patch of vasohibins define the specific determinants for recognizing and cleaving the C-terminal tyrosine of α-tubulin and for binding microtubules, respectively. The vasohibin-SVBP interaction and the ability of the enzyme complex to associate with microtubules regulate axon specification of neurons. Our results define the structural basis of tubulin detyrosination by vasohibins and show the relevance of this process for neuronal development. Our findings offer a unique platform for developing drugs against human conditions with abnormal tubulin tyrosination levels, such as cancer, heart defects and possibly brain disorders.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Angiogénicas/química , Animales , Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , Células Cultivadas , Cristalografía por Rayos X , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Mapas de Interacción de Proteínas , Tubulina (Proteína)/química
18.
Sci Rep ; 8(1): 474, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323173

RESUMEN

In this report, we present an improved protocol for CRISPR/Cas9 genome editing in mice. The procedure consists in the electroporation of intact mouse zygotes with ribonucleoprotein complexes prepared in vitro from recombinant Cas9 nuclease and synthetic dual guide RNA. This simple cloning-free method proves to be extremely efficient for the generation of indels and small deletions by non-homologous end joining, and for the generation of specific point mutations by homology-directed repair. The procedure, which avoids DNA construction, in vitro transcription and oocyte microinjection, greatly simplifies genome editing in mice.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Cigoto/metabolismo , Animales , Reparación del ADN por Unión de Extremidades , Enzimas Desubicuitinizantes , Electroporación , Endopeptidasas/química , Endopeptidasas/genética , Femenino , Sitios Genéticos , Técnicas de Genotipaje , Mutación INDEL , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación Missense
19.
Sci Rep ; 8(1): 4679, 2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535400

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

20.
Mol Biol Cell ; 29(2): 154-165, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29167379

RESUMEN

In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain and is modulated by its projection domain. Site-specific pseudophosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles, or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phosphodependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations that may have a deleterious impact during neurodegeneration.


Asunto(s)
Microtúbulos/ultraestructura , Proteínas tau/química , Proteínas tau/ultraestructura , Citoesqueleto de Actina/ultraestructura , Microscopía por Crioelectrón , Humanos , Neuronas/metabolismo , Fosforilación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA