Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Biochem Biophys Res Commun ; 649: 79-86, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36758482

RESUMEN

Glutathione transferases are detoxification enzymes with multifaceted roles, including a role in the metabolism and scavenging of nitric oxide (NO) compounds in cells. Here, we explored the ability of Trametes versicolor glutathione transferases (GSTs) from the Omega class (TvGSTOs) to bind metal-nitrosyl compounds. TvGSTOs have been studied previously for their ligandin role and are interesting models to study protein‒ligand interactions. First, we determined the X-ray structure of the TvGSTO3S isoform bound to the dinitrosyl glutathionyl iron complex (DNGIC), a physiological compound involved in the storage of nitric oxide. Our results suggested a different binding mode compared to the one previously described in human GST Pi 1 (GSTP1). Then, we investigated the manner in which TvGSTO3S binds three nonphysiological metal-nitrosyl compounds with different metal cores (iron, ruthenium and osmium). We assayed sodium nitroprusside, a well-studied vasodilator used in cases of hypertensive crises or heart failure. Our results showed that the tested GST can bind metal-nitrosyls at two distinct binding sites. Thermal shift analysis with six isoforms of TvGSTOs identified TvGSTO6S as the best interactant. Using the Griess method, TvGSTO6S was found to improve the release of nitric oxide from sodium nitroprusside in vitro, whereas the effects of human GST alpha 1 (GSTA1) and GSTP1 were moderate. Our results open new structural perspectives for understanding the interactions of glutathione transferases with metal-nitrosyl compounds associated with the biochemical mechanisms of NO uptake/release in biological systems.


Asunto(s)
Óxido Nítrico , Trametes , Humanos , Óxido Nítrico/metabolismo , Nitroprusiato/farmacología , Trametes/metabolismo , Glutatión Transferasa/metabolismo , Hierro/metabolismo , Glutatión/metabolismo
2.
Int J Mol Sci ; 24(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37240409

RESUMEN

Parasites and microorganisms (protozoa, bacteria, and viruses) are still a concern despite progress in hygiene and anti-infectious therapy [...].


Asunto(s)
Nanopartículas , Parásitos , Vacunas , Virus , Animales , Bacterias
3.
Molecules ; 28(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38005280

RESUMEN

Gold nanoparticles (AuNPs) can be described as nanozymes, species that are able to mimic the catalytic activities of several enzymes, such as oxidase/peroxidase, reductase, or catalase. Most studies in the literature focus on the colloidal suspension of AuNPs, and it is obvious that their immobilization could open the doors to new applications thanks to their increased stability in this state. This work aimed to investigate the behavior of surfaces covered by immobilized AuNPs (iAuNPs). Citrate-stabilized AuNPs (AuNPs-cit) were synthesized and immobilized on glass slides using a simple dip coating method. The resulting iAuNPs were characterized (surface plasmon resonance, microscopy, quantification of immobilized AuNPs), and their multi-enzymatic-like activities (oxidase-, peroxidase-, and catalase-like activity) were evaluated. The comparison of their activities versus AuNPs-cit highlighted their added value, especially the preservation of their activity in some reaction media, and their ease of reuse. The huge potential of iAuNPs for heterogeneous catalysis was then applied to the degradation of two model molecules of hospital pollutants: metronidazole and methylene blue.


Asunto(s)
Oro , Nanopartículas del Metal , Catalasa , Peroxidasa , Peroxidasas
4.
Electrophoresis ; 43(23-24): 2377-2391, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36153831

RESUMEN

Taylor dispersion analysis (TDA) is an interesting tool for nanoparticle (NP) size determination, feasible using simple capillary electrophoresis apparatus. Based upon the radial diffusion of analytes upon a laminar stream, the diffusion coefficient of species is easily estimable. Moreover, TDA is generally more adequate than conventional dynamic light scattering methodologies as it is less dependent on the polydispersity of the sample, leading to accurate measurement and reliable results. This review provides every paper mentioning the use of TDA for metallic-based NPs size determination. Diverse strategies for the detection of metallic NPs (like UV-visible and inductively coupled plasma-mass spectrometry - ICP-MS - for instance) and interpretation of the Taylorgrams are discussed. Based upon the literature, advices on future prospects are also indicated, especially for the comparison of TDA results with other classical techniques.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Hidrodinámica , Dispersión Dinámica de Luz , Difusión , Electroforesis Capilar/métodos
5.
Analyst ; 146(21): 6643-6649, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34591047

RESUMEN

Covalent organic frameworks (COFs) are a class of porous materials with high surface area, high porosity, good stability and tunable structure that have been widely used in the separation area. In this work, we have proposed the in situ synthesis of a novel COF composed of 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (Tz) and 1,4-dihydroxyterephthalaldehyde (Da) onto the capillary inner surface for electrochromatographic separation. Fourier transform infrared (FT-IR) spectroscopy, elemental analysis (EA) and scanning electron microscopy (SEM) have facilitated the characterization of the prepared capillary columns. The COF (TzDa) modified OT-CEC column exhibited satisfactory separation selectivity towards neutral compounds (such as chlorobenzenes and alkylbenzenes), acidic and basic compounds (such as phenols and anilines), food additives (vanillin and its analogues) and small biomolecules (such as amino acids and polypeptides). Furthermore, the TzDa modified capillary was quite stable and reproducible. The relative standard deviations for retention times of the test analytes (alkylbenzenes) were as follows: for intra-day (n = 3) runs (≤1.74%), inter-day (n = 3) runs (≤2.25%) and between columns (n = 3) (≤4.83%). This new type of COF-based stationary phase has tremendous potential in separation science.


Asunto(s)
Electrocromatografía Capilar , Estructuras Metalorgánicas , Fenoles , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
6.
Anal Bioanal Chem ; 413(5): 1473-1483, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33495848

RESUMEN

The design of layer-by-layer (LbL) polyelectrolyte films including nanoparticles is a growing field of innovation in a wide range of biomedical applications. Gold nanoparticles (AuNPs) are very attractive for further biomolecule coupling to induce a pharmacological effect. Nanostructured LbL films coupled with such metallic species show properties that depend on the conditions of construction, i.e. the polymer nature and dissolution buffer. Tripartite LbL films (polycation, AuNP, and polyanion) were evaluated using two different polycationic polymers (poly(allylamine hydrochloride) (PAH), poly(ethylene imine) (PEI)) and various medium conditions (salts, i.e. phosphate, Tris or Tris-NaCl buffers, and concentration). AuNP incorporation and film stability were analysed by visible spectrophotometry, capillary zone electrophoresis, a quartz crystal microbalance, and high-performance liquid chromatography. The ideal compromise between AuNP loading and film stability was obtained using PAH prepared in Tris-NaCl buffer (0.01-0.15 M). This condition allowed the formation of a LbL film that was more stable than the film with PEI and provided an AuNP quantity that was 4.8 times greater than that of the PAH-PBS-built film. In conclusion, this work presents an analytical strategy for the characterization of nanostructured multilayer films and optimization of LbL films enriched with AuNPs to design biomedical device coatings.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Polielectrolitos/química , Tampones (Química) , Cromatografía Líquida de Alta Presión , Electroforesis Capilar , Nanotecnología , Poliaminas/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie
7.
J Mater Sci Mater Med ; 32(3): 23, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675446

RESUMEN

The combination of Fe3O4@Ag superparamagnetic hybrid nanoparticles and nitric oxide (NO) represents an innovative strategy for a localized NO delivery with a simultaneous antibacterial and antitumoral actions. Here, we report the design of Fe3O4@Ag hybrid nanoparticles, coated with a modified and nitrosated chitosan polymer, able to release NO in a biological medium. After their synthesis, physicochemical characterization confirmed the obtention of small NO-functionalized superparamagnetic Fe3O4@Ag NPs. Antibacterial assays demonstrated enhanced effects compared to control. Bacteriostatic effect against Gram-positive strains and bactericidal effect against E. coli were demonstrated. Moreover, NO-functionalized Fe3O4@Ag NPs demonstrated improved ability to reduce cancer cells viability and less cytotoxicity against non-tumoral cells compared to Fe3O4@Ag NPs. These effects were associated to the ability of these NPs act simultaneous as cytotoxic (necrosis inductors) and cytostatic compounds inducing S-phase cell cycle arrest. NPs also demonstrated low hemolysis ratio (<10%) at ideal work range, evidencing their potential for biomedical applications. Targeted and hemocompatible nitric oxide-releasing multi-functional hybrid nanoparticles for antitumor and antimicrobial applications.


Asunto(s)
Compuestos Férricos/química , Nanopartículas del Metal/química , Nanoestructuras/química , Óxido Nítrico/química , Plata/química , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Materiales Biocompatibles , Ciclo Celular/efectos de los fármacos , Línea Celular , Humanos , Ensayo de Materiales , Óxido Nítrico/farmacología
8.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672995

RESUMEN

Multidrug-resistant (MDR) bacteria constitute a global health issue. Over the past ten years, interest in nanoparticles, particularly metallic ones, has grown as potential antibacterial candidates. However, as there is no consensus about the procedure to characterize the metallic nanoparticles (MNPs; i.e., metallic aggregates) and evaluate their antibacterial activity, it is impossible to conclude about their real effectiveness as a new antibacterial agent. To give part of the answer to this question, 12 nm gold and silver nanoparticles have been prepared by a chemical approach. After their characterization by transmission electronic microscopy (TEM), Dynamic Light Scattering (DLS), and UltraViolet-visible (UV-vis) spectroscopy, their surface accessibility was tested through the catalytic reduction of the 4-nitrophenol, and their stability in bacterial culture medium was studied. Finally, the antibacterial activities of 12 nm gold and silver nanoparticles facing Staphylococcus aureus and Escherichia coli have been evaluated using the broth microdilution method. The results show that gold nanoparticles have a weak antibacterial activity (i.e., slight inhibition of bacterial growth) against the two bacteria tested. In contrast, silver nanoparticles have no activity on S. aureus but demonstrate a high antibacterial activity against Escherichia coli, with a minimum inhibitory concentration of 128 µmol/L. This high antibacterial activity is also maintained against two MDR-E. coli strains.


Asunto(s)
Antibacterianos/toxicidad , Escherichia coli/efectos de los fármacos , Oro/química , Nanopartículas del Metal/toxicidad , Plata/química , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Dispersión Dinámica de Luz , Escherichia coli/crecimiento & desarrollo , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana/métodos , Microscopía Electrónica de Transmisión , Espectrofotometría , Staphylococcus aureus/crecimiento & desarrollo
9.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638818

RESUMEN

In nanomedicine, hybrid nanomaterials stand out for providing new insights in both the diagnosis and treatment of several diseases. Once administered, engineered nanoparticles (NPs) interact with biological molecules, and the nature of this interaction might directly interfere with the biological fate and action of the NPs. In this work, we synthesized a hybrid magnetic nanostructure, with antibacterial and antitumoral potential applications, composed of a magnetite core covered by silver NPs, and coated with a modified chitosan polymer. As magnetite NPs readily oxidize to maghemite, we investigated the structural properties of the NPs after addition of the two successive layers using Mössbauer spectroscopy. Then, the structural characteristics of the NPs were correlated to their interaction with albumin, the major blood protein, to evidence the consequences of its binding on NP properties and protein retention. Thermodynamic parameters of the NPs-albumin interaction were determined. We observed that the more stable NPs (coated with modified chitosan) present a lower affinity for albumin in comparison to pure magnetite and magnetite/silver hybrid NPs. Surface properties were key players at the NP-biological interface. To the best of our knowledge, this is the first study that demonstrates a correlation between the structural properties of complex hybrid NPs and their interaction with albumin.


Asunto(s)
Quitosano/química , Materiales Biocompatibles Revestidos/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Oxidación-Reducción
10.
Langmuir ; 36(15): 4165-4173, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32223171

RESUMEN

Lipid nanocapsules (LNCs) are drug delivery platforms designed for different administration routes including intravenous delivery. Nanocarrier binding with plasma proteins such as albumin is an important factor that influences the pharmacokinetics of the drug and the drug delivery system. The aim of this paper was to characterize LNCs with different surface compositions and hydrophobicities to study their interactions with albumin: binary LNCs [oil-glyceryl trioctanoate (TG) and PEGylated surfactant macrogol 15-hydroxystearate (MHS)] and ternary LNCs (TG, MHS, and Span 80). Span was found to stabilize and decrease the LNC size. The formation of a stable LNC/albumin complex in the ground state was demonstrated. Thermodynamic parameters indicated that complex formation was exothermic and spontaneous, and the interactions involved van der Waals forces and hydrogen bond formation. Ternary LNCs showed higher affinity for albumin than did binary LNCs (affinity constant 10-fold higher). This study is the first report on the thermodynamic mechanisms that lead to the formation of a complex between albumin and organic nanoparticles with different surface architectures.


Asunto(s)
Nanocápsulas , Albúminas , Sistemas de Liberación de Medicamentos , Lípidos , Termodinámica
11.
J Biol Chem ; 291(29): 15020-8, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226614

RESUMEN

Exposure of bacteria to NO results in the nitrosylation of cysteine thiols in proteins and low molecular weight thiols such as GSH. The cells possess enzymatic systems that catalyze the denitrosylation of these modified sulfurs. An important player in these systems is thioredoxin (Trx), a ubiquitous, cytoplasmic oxidoreductase that can denitrosylate proteins in vivo and S-nitrosoglutathione (GSNO) in vitro However, a periplasmic or extracellular denitrosylase has not been identified, raising the question of how extracytoplasmic proteins are repaired after nitrosative damage. In this study, we tested whether DsbG and DsbC, two Trx family proteins that function in reducing pathways in the Escherichia coli periplasm, also possess denitrosylating activity. Both DsbG and DsbC are poorly reactive toward GSNO. Moreover, DsbG is unable to denitrosylate its specific substrate protein, YbiS. Remarkably, by borrowing the CGPC active site of E. coli Trx-1 in combination with a T200M point mutation, we transformed DsbG into an enzyme highly reactive toward GSNO and YbiS. The pKa of the nucleophilic cysteine, as well as the redox and thermodynamic properties of the engineered DsbG are dramatically changed and become similar to those of E. coli Trx-1. X-ray structural insights suggest that this results from a loss of two direct hydrogen bonds to the nucleophilic cysteine sulfur in the DsbG mutant. Our results highlight the plasticity of the Trx structural fold and reveal that the subtle change of the number of hydrogen bonds in the active site of Trx-like proteins is the key factor that thermodynamically controls reactivity toward nitrosylated compounds.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Oxidorreductasas/metabolismo , Proteínas Periplasmáticas/metabolismo , Tiorredoxinas/metabolismo , Sitios de Unión , Cisteína , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Nitrosación , Oxidorreductasas/química , Oxidorreductasas/genética , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Ingeniería de Proteínas , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , S-Nitrosoglutatión/metabolismo , Azufre/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética
12.
Nitric Oxide ; 71: 32-43, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29051112

RESUMEN

PURPOSE: In a previous work, we have synthetized a new dinitrosothiol, i.e. S,S'-dinitrosobucillamine BUC(NO)2 combining S-nitroso-N-acetylpenicillamine (SNAP) and S-nitroso-N-acetylcysteine (NACNO) in its structure. When exposed to isolated aorta, we observed a 1.5-fold increase of •NO content and a more potent vasorelaxation (1 log higher pD2) compared to NACNO and SNAP alone or combined (Dahboul et al., 2014). In the present study, we analyzed the thermodynamics and kinetics for the release of •NO through computational modeling techniques and correlated it to plasma assays. Then BUC(NO)2 was administered in vivo to rats, assuming it will induce higher and/or longer hypotensive effects than its two constitutive S-mononitrosothiols. METHODS: Free energies for the release of •NO entities have been computed at the density functional theory level assuming an implicit model for the aqueous environment. Degradation products of BUC(NO)2 were evaluated in vitro under heating and oxidizing conditions using HPLC coupled with tandem mass spectrometry (MS/MS). Plasma from rats were spiked with RSNO and kinetics of RSNO degradation was measured using the classical Griess-Saville method. Blood pressure was measured in awake male Wistar rats using telemetry (n = 5, each as its own control, 48 h wash-out periods between subcutaneous injections under transient isoflurane anesthesia, random order: 7 mL/kg vehicle, 3.5, 7, 14 µmol/kg SNAP, NACNO, BUC(NO)2 and an equimolar mixture of SNAP + NACNO in order to mimic the number of •NO contained in BUC(NO)2). Variations of mean (ΔMAP, reflecting arterial dilation) and pulse arterial pressures (ΔPAP, indirectly reflecting venodilation, used to determine effect duration) vs. baseline were recorded for 4 h. RESULTS: Computational modeling highlights the fact that the release of the first •NO radical in BUC(NO)2 requires a free energy which is intermediate between the values obtained for SNAP and NACNO. However, the release of the second •NO radical is significantly favored by the concerted formation of an intramolecular disulfide bond. The corresponding oxidized compound was also characterized as related substance obtained under degradation conditions. The in vitro degradation rate of BUC(NO)2 was significantly greater than for the other RSNO. For equivalent low and medium •NO-load, BUC(NO)2 produced a hypotension identical to NACNO, SNAP and the equimolar mixture of SNAP + NACNO, but its effect was greater at higher doses (-62 ± 8 and -47 ± 14 mmHg, maximum ΔMAP for BUC(NO)2 and SNAP + NACNO, respectively). Its duration of effect on PAP (-50%) lasted from 35 to 95 min, i.e. shorter than for the other RSNO (from 90 to 135 min for the mixture SNAP + NACNO). CONCLUSION: A faster metabolism explains the abilities of BUC(NO)2 to release higher amounts of •NO and to induce larger hypotension but shorter-lasting effects than those induced by the SNAP + NACNO mixture, despite an equivalent •NO-load.


Asunto(s)
Antihipertensivos/uso terapéutico , Cisteína/análogos & derivados , Hipertensión/tratamiento farmacológico , Donantes de Óxido Nítrico/uso terapéutico , Compuestos Nitrosos/uso terapéutico , Acetilcisteína/análogos & derivados , Acetilcisteína/metabolismo , Acetilcisteína/uso terapéutico , Animales , Antihipertensivos/sangre , Antihipertensivos/química , Antihipertensivos/metabolismo , Presión Arterial/efectos de los fármacos , Simulación por Computador , Cisteína/sangre , Cisteína/química , Cisteína/metabolismo , Cisteína/uso terapéutico , Cinética , Masculino , Modelos Químicos , Donantes de Óxido Nítrico/sangre , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/metabolismo , Compuestos Nitrosos/sangre , Compuestos Nitrosos/química , Compuestos Nitrosos/metabolismo , Ratas Wistar , S-Nitroso-N-Acetilpenicilamina/metabolismo , S-Nitroso-N-Acetilpenicilamina/uso terapéutico
13.
J Phys Chem A ; 120(24): 4191-200, 2016 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-27249061

RESUMEN

Nowadays, S-nitrosothiols (RSNOs) represent a promising class of nitric oxide (NO) donors that could be successfully used as drugs to compensate the decrease of NO production that usually arises in conjunction with cardiovascular diseases. Nevertheless, notwithstanding their pharmacological interest, the structure-stability relationship in RSNOs is still unclear, and this issue, together with the mechanism of NO donation in the physiological medium, deserves further investigation. As a first step forward in this direction, in this paper, the overall stability and structural preference of two pharmacologically relevant S-nitrosothiol molecules were studied in detail by means of computational strategies. In particular, performing calculations in implicit solvent (water) on the S-nitroso-N-acetylpenicillamine and the S-nitroso-N-acetylcysteine and analyzing the noncovalent interactions networks of their most stable conformers, we observed that the structure and the stability of these molecules can be directly related to the formation of stabilizing hydrogen-bond and chalcogen-chalcogen intramolecular interactions. The obtained results represent the starting point for further investigations to be conducted also on larger RSNOs to shed further light on the role played by intra- and intermolecular interactions and by solvation effects in stabilizing this class of molecules. The obtained insights will be hopefully helpful to design new RSNO-based drugs characterized by an enhanced pharmacological potency.


Asunto(s)
Modelos Moleculares , Donantes de Óxido Nítrico/química , S-Nitrosotioles/química , Estabilidad de Medicamentos , Conformación Molecular , Agua/química
14.
Drug Dev Ind Pharm ; 42(12): 1928-1937, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27126574

RESUMEN

BACKGROUND: Nitric oxide (NO) is a gaseous transmitter playing numerous physiological roles and characterized by a short half-life. Its binding to endogenous thiols increases its stability, facilitating its storage and transport. The purpose of this study was to investigate the nitrosated serum albumin (SA-SNO) and to provide a reference for its easy preparation for further use in in vitro studies. METHODS: Serum albumin (SA) was S-nitrosated by reacting with (i) NaNO2 in acidic medium; (ii) different low-molecular weight S-nitrosothiols (RSNO) (S-nitrosocysteine (CysNO), S-nitrosoglutathione (GSNO), and S,S'-dinitrosobucillamine (Buc(NO)2)); and (iii) diethylamine NONOate (DEA/NO). SA-SNO was purified by size exclusion chromatography and the S-nitrosation site and the rate were studied by mass spectrometry and Griess-Saville assay, respectively. Then, SA-SNO was characterized by spectrofluorimetry, dynamic light scattering, and circular dichroism. Finally, SA-SNO reactivity with citrate stabilized gold nanoparticles (AuNP-citrate) was investigated via determination of NO release. RESULTS: S-nitrosation rates of SA were 90.1 ± 3.3, 76.8 ± 2.7, 80.3 ± 3.2, 84.8 ± 5.0, and 15.4 ± 1.9% (n = 5), when SA was reacted with acidified NaNO2, CysNO, GSNO, Buc(NO)2, and DEA/NO, respectively. The physicochemical characterization indicated that the resulting product corresponded to a mono-S-nitrosothiol (on cysteine-34), and the conformational construction remained unchanged. Stability studies showed that the NO content was preserved over 1 week. AuNP-citrate reacted with SA-SNO with increase of its hydrodynamic diameter but preservation of SNO bond. CONCLUSIONS: SA-SNO prepared and stored under the reported conditions affords a well-defined reference suitable for in vitro studies.

16.
Antibiotics (Basel) ; 12(10)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37887244

RESUMEN

Amphotericin B is the oldest antifungal molecule which is still currently widely used in clinical practice, in particular for the treatment of invasive diseases, even though it is not devoid of side effects (particularly nephrotoxicity). Recently, its redox properties (i.e., both prooxidant and antioxidant) have been highlighted in the literature as mechanisms involved in both its activity and its toxicity. Interestingly, similar properties can be described for inorganic nanoparticles. In the first part of the present review, the redox properties of Amphotericin B and inorganic nanoparticles are discussed. Then, in the second part, inorganic nanoparticles as carriers of the drug are described. A special emphasis is given to their combined redox properties acting either as a prooxidant or as an antioxidant and their connection to the activity against pathogens (i.e., fungi, parasites, and yeasts) and to their toxicity. In a majority of the published studies, inorganic nanoparticles carrying Amphotericin B are described as having a synergistic activity directly related to the rupture of the redox homeostasis of the pathogen. Due to the unique properties of inorganic nanoparticles (e.g., magnetism, intrinsic anti-infectious properties, stimuli-triggered responses, etc.), these nanomaterials may represent a new generation of medicine that can synergistically enhance the antimicrobial properties of Amphotericin B.

17.
J Chromatogr A ; 1694: 463913, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36898235

RESUMEN

Taylor dispersion analysis (TDA) is a technique dedicated to the determination of the molecular diffusion coefficient (D) of species, using band broadening of an analyte in a laminar flow. Two modes are commonly used to perform TDA: pulse and frontal modes. In each case, a fitting of the signal is required. We propose here a third mode denoted as cross-frontal mode, combining two crossed sample fronts without modification of a classical CE device for the rapid and accurate determination of D of caffeine, reduced glutathione (GSH), insulin from bovine pancreas, bovine serum albumin (BSA) and citrate-capped gold nanoparticles (AuNP). Theoretical aspects and methodology are described, showing a good correlation between the so-called cross-frontal mode and usual frontal mode. Limitations of the techniques are also assessed, and are similar to regular modes while no fitting is required. This new methodology allows improving the sensitivity toward low concentrated sample compared to pulse mode, and an alternative mathematical treatment compared to regular TDA modes.


Asunto(s)
Oro , Nanopartículas del Metal , Albúmina Sérica Bovina , Insulina
18.
Microorganisms ; 10(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35208891

RESUMEN

The emergence of multidrug-resistant (MDR) bacteria in recent years has been alarming and represents a major public health problem. The development of effective antimicrobial agents remains a key challenge. Nanotechnologies have provided opportunities for the use of nanomaterials as components in the development of antibacterial agents. Indeed, metal-based nanoparticles (NPs) show an effective role in targeting and killing bacteria via different mechanisms, such as attraction to the bacterial surface, destabilization of the bacterial cell wall and membrane, and the induction of a toxic mechanism mediated by a burst of oxidative stress (e.g., the production of reactive oxygen species (ROS)). Considering the lack of new antimicrobial drugs with novel mechanisms of action, the induction of oxidative stress represents a valuable and powerful antimicrobial strategy to fight MDR bacteria. Consequently, it is of particular interest to determine and precisely characterize whether NPs are able to induce oxidative stress in such bacteria. This highlights the particular interest that NPs represent for the development of future antibacterial drugs. Therefore, this review aims to provide an update on the latest advances in research focusing on the study and characterization of the induction of oxidative-stress-mediated antimicrobial mechanisms by metal-based NPs.

19.
Int J Pharm ; 623: 121881, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35680111

RESUMEN

Food-processing and pharmaceutical industries share a lot of stability issues against the same physical, chemical, and microbiological phenomena. They also share some solutions to improve the stability as the use of preservatives and packaging. Ecological concerns lead to the development of tremendous innovations in food. Some of these innovations could also be beneficial in the pharmaceutical domain. The objective of this review is to evaluate the potential application of these findings in the pharmaceutical field and the main limits in terms of toxicity, environmental, economic and regulatory issues. The principal factors influencing the shelf-life were highlighted through the description of the stability studies usually performed in the pharmaceutical industry (according to European guidelines). To counter those factors, different solutions are currently available as preservatives and specific packaging. They were described and debated with an overview of recent food innovations in each field. The limits of the current solutions in the pharmaceutical field and the innovation in the food field have inspired a critical pharmaceutical outlook. The active and intelligent packaging for active pharmaceutical ingredients of the future is imagined.


Asunto(s)
Embalaje de Alimentos , Conservación de Alimentos , Industria Farmacéutica , Alimentos , Conservadores Farmacéuticos
20.
J Pharm Anal ; 12(3): 406-414, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35811624

RESUMEN

The cyanobacterium Arthrospira platensis, spirulina, is a source of pigments such as phycobiliprotein and phycocyanin. Phycocyanin is used in the food, cosmetics, and pharmaceutical industries because of its antioxidant, anti-inflammatory, and anticancer properties. The different steps involved in extraction and purification of this protein can alter the final properties. In this review, the stability of phycocyanin (pH, temperature, and light) is discussed, considering the physicochemical parameters of kinetic modeling. The optimal working pH range for phycocyanin is between 5.5 and 6.0 and it remains stable up to 45 °C; however, exposure to relatively high temperatures or acidic pH decreases its half-life and increases the degradation kinetic constant. Phycobiliproteins are sensitive to light; preservatives such as mono- and di-saccharides, citric acid, or sodium chloride appear to be effective stabilizing agents. Encapsulation within nano- or micro-structured materials such as nanofibers, microparticles, or nanoparticles, can also preserve or enhance its stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA