Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Therm Biol ; 111: 103394, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36585075

RESUMEN

Ectotherm body temperatures fluctuate with environmental variability and host behavior, which may influence host-pathogen interactions. Fungal pathogens are a major threat to ectotherms and may be highly responsive to the fluctuating thermal profiles of individual hosts, especially cool-loving fungi exposed to high host temperatures. However, most studies estimate pathogen thermal performance based on averages of host or surrogate environmental temperatures, potentially missing effects of short-term host temperature shifts such as daily or hourly heat spikes. We recorded individual thermal profiles of Australian rainforest frogs using temperature-sensitive radio-transmitters. We then reproduced a subset of individual thermal profiles in growth chambers containing cultures of the near-global amphibian pathogen Batrachochytrium dendrobatidis (Bd) to investigate how realistic host temperature profiles affect Bd growth. We focused on thermal profiles that exceed the thermal optimum of Bd because the effects of realistic heat spikes on Bd growth are unresolved. Our laboratory incubation experiment revealed that Bd growth varied in response to relatively small differences in heat spike characteristics of individual frog thermal profiles, such as a single degree or a few hours, highlighting the importance of individual host behaviors in predicting population-level disease dynamics. The fungus also grew better than predicted under the most extreme and unpredictable frog temperature profile, recovering from two days of extreme (nearly 32 °C) heat spikes without negative effects on overall growth, suggesting we are underestimating the growth potential of the pathogen in nature. Combined with the previous finding that Bd reduces host heat tolerance, our study suggests that this pathogen may carry a competitive edge over hosts in the face of anthropogenic climate change.


Asunto(s)
Quitridiomicetos , Animales , Temperatura , Australia , Anuros/microbiología , Calor
2.
Dis Aquat Organ ; 148: 1-11, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35142293

RESUMEN

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis, which is a primary driver for amphibian population declines and extinctions worldwide. For highly susceptible species, such as the green and golden bell frog Litoria aurea, large numbers of Bd-related mortalities are thought to occur during the colder season (winter), when low temperatures favour the growth of the pathogen. However, extant L. aurea populations are persisting with Bd. We measured Bd prevalence and infection levels of wild L. aurea using capture-mark-recapture and radio-tracking methods. Using this information, we sought to determine host and environmental correlates of Bd prevalence and infection load. Mean ± SE infection load was higher in frogs sampled in autumn (431.5 ± 310.4 genomic equivalents; GE) and winter (1147.5 ± 735.8 GE), compared to spring (21.8 ± 19.3 GE) and summer (0.9 ± 0.8 GE). Furthermore, prevalence of Bd infection in L. aurea was highest in winter (43.6%; 95% CI 33.1-54.7%) and lowest in summer (11.2%; 95% CI 6.8-17.9%). Both prevalence and infection load decreased with increasing temperature. Seven frogs cleared their fungal infection during the coolest months when Bd prevalence was highest; however, these clearances were not permanent, as 5 frogs became infected again. Understanding the factors that allow amphibians to clear their Bd infections when temperatures are optimal for Bd growth presents the potential for manipulating such factors and provides an important step in future research.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Anuros , Micosis/epidemiología , Micosis/veterinaria , Prevalencia , Estaciones del Año
3.
Heredity (Edinb) ; 125(3): 110-123, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32483317

RESUMEN

Emerging infectious diseases can cause dramatic declines in wildlife populations. Sometimes, these declines are followed by recovery, but many populations do not recover. Studying differential recovery patterns may yield important information for managing disease-afflicted populations and facilitating population recoveries. In the late 1980s, a chytridiomycosis outbreak caused multiple frog species in Australia's Wet Tropics to decline. Populations of some species (e.g., Litoria nannotis) subsequently recovered, while others (e.g., Litoria dayi) did not. We examined the population genetics and current infection status of L. dayi, to test several hypotheses regarding the failure of its populations to recover: (1) a lack of individual dispersal abilities has prevented recolonization of previously occupied locations, (2) a loss of genetic variation has resulted in limited adaptive potential, and (3) L. dayi is currently adapting to chytridiomycosis. We found moderate-to-high levels of gene flow and diversity (Fst range: <0.01-0.15; minor allele frequency (MAF): 0.192-0.245), which were similar to previously published levels for recovered L. nannotis populations. This suggests that dispersal ability and genetic diversity do not limit the ability of L. dayi to recolonize upland sites. Further, infection intensity and prevalence increased with elevation, suggesting that chytridiomycosis is still limiting the elevational range of L. dayi. Outlier tests comparing infected and uninfected individuals consistently identified 18 markers as putatively under selection, and several of those markers matched genes that were previously implicated in infection. This suggests that L. dayi has genetic variation for genes that affect infection dynamics and may be undergoing adaptation.


Asunto(s)
Anuros , Quitridiomicetos , Brotes de Enfermedades/veterinaria , Genética de Población , Micosis , Animales , Anuros/genética , Anuros/microbiología , Quitridiomicetos/patogenicidad , Flujo Génico , Variación Genética , Micosis/veterinaria , Dinámica Poblacional
4.
Mol Ecol ; 28(11): 2731-2745, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31013393

RESUMEN

Recent decades have seen the emergence and spread of numerous infectious diseases, often with severe negative consequences for wildlife populations. Nevertheless, many populations survive the initial outbreaks, and even undergo recoveries. Unfortunately, the long-term effects of these outbreaks on host population genetics are poorly understood; to increase this understanding, we examined the population genetics of two species of rainforest frogs (Litoria nannotis and Litoria serrata) that have largely recovered from a chytridiomycosis outbreak at two national parks in the Wet Tropics of northern Australia. At the wetter, northern park there was little evidence of decreased genetic diversity in either species, and all of the sampled sites had high minor allele frequencies (mean MAF = 0.230-0.235), high heterozygosity (0.318-0.325), and few monomorphic markers (1.4%-4.0%); however, some recovered L. nannotis populations had low Ne values (59.3-683.8) compared to populations that did not decline during the outbreak (1,537.4-1,756.5). At the drier, southern park, both species exhibited lower diversity (mean MAF = 0.084-0.180; heterozygosity = 0.126-0.257; monomorphic markers = 3.7%-43.5%; Ne  = 18.4-676.1). The diversity patterns in this park matched habitat patterns, with both species having higher diversity levels and fewer closely related individuals at sites with higher quality habitat. These patterns were more pronounced for L. nannotis, which has lower dispersal rates than L. serrata. These results suggest that refugia with high quality habitat are important for retaining genetic diversity during disease outbreaks, and that gene flow following disease outbreaks is important for re-establishing diversity in populations where it was reduced.


Asunto(s)
Anuros/microbiología , Biodiversidad , Brotes de Enfermedades , Micosis/epidemiología , Refugio de Fauna , Animales , Anuros/genética , Variación Genética , Geografía , Polimorfismo de Nucleótido Simple/genética , Queensland , Tamaño de la Muestra
5.
Oecologia ; 181(4): 997-1009, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27021312

RESUMEN

Ontogenetic changes in disease susceptibility have been demonstrated in many vertebrate taxa, as immature immune systems and limited prior exposure to pathogens can place less developed juveniles at a greater disease risk. By causing the disease chytridiomycosis, Batrachochytrium dendrobatidis (Bd) infection has led to the decline of many amphibian species. Despite increasing knowledge on how Bd varies in its effects among species, little is known on the interaction between susceptibility and development within host species. We compared the ontogenetic susceptibility of post-metamorphic green and golden bell frogs Litoria aurea to chytridiomycosis by simultaneously measuring three host-pathogen responses as indicators of the development of the fungus-infection load, survival rate, and host immunocompetence-following Bd exposure in three life stages (recently metamorphosed juveniles, subadults, adults) over 95 days. Frogs exposed to Bd as recently metamorphosed juveniles acquired higher infection loads and experienced lower immune function and lower survivorship than subadults and adults, indicating an ontogenetic decline in chytridiomycosis susceptibility. By corresponding with an intrinsic developmental maturation in immunocompetence seen in uninfected frogs, we suggest these developmental changes in host susceptibility in L. aurea may be immune mediated. Consequently, the physiological relationship between ontogeny and immunity may affect host population structure and demography through variation in life stage survival, and understanding this can shape management targets for effective amphibian conservation.


Asunto(s)
Anuros , Quitridiomicetos , Susceptibilidad a Enfermedades , Animales , Conservación de los Recursos Naturales , Inmunocompetencia , Micosis/inmunología
7.
Commun Biol ; 5(1): 1182, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333588

RESUMEN

Identifying hotspots of biological diversity is a key step in conservation prioritisation. Melanesia-centred on the vast island of New Guinea-is increasingly recognised for its exceptionally species-rich and endemic biota. Here we show that Melanesia has the world's most diverse insular amphibian fauna, with over 7% of recognised global frog species in less than 0.7% of the world's land area, and over 97% of species endemic. We further estimate that nearly 200 additional candidate species have been discovered but remain unnamed, pointing to a total fauna in excess of 700 species. Nearly 60% of the Melanesian frog fauna is in a lineage of direct-developing microhylids characterised by smaller distributions than co-occurring frog families, suggesting lineage-specific high beta diversity is a key driver of Melanesian anuran megadiversity. A comprehensive conservation status assessment further highlights geographic concentrations of recently described range-restricted threatened taxa that warrant urgent conservation actions. Nonetheless, by world standards, the Melanesian frog fauna is relatively intact, with 6% of assessed species listed as threatened and no documented extinctions; and thus it provides an unparalleled opportunity to understand and conserve a megadiverse and relatively intact insular biota.


Asunto(s)
Biodiversidad , Biota , Animales , Melanesia , Anuros
8.
Sci Rep ; 9(1): 83, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30643160

RESUMEN

The amphibian chytrid fungus Batrachochytrium dendrobatidis is an emerging infectious pathogen present on every continent except Antarctica. It causes the disease chytridiomycosis in a subset of species but does not always result in disease or death for every host. Ambient temperature influences both amphibian metabolism and chytrid pathogenicity, however the interactive effects on host physiology is not well understood. We investigated the sublethal effect of B. dendrobatidis infection on a susceptible host, Litoria aurea to test (1) whether the infection load, metabolic activity, body fat and gonad size differed in L. aurea at either 24 °C or 12 °C ambient temperatures and (2) whether previous Bd infection caused long-term changes to body fat and gonad size. Litoria aurea in 12 °C treatments had higher infection loads of B. dendrobatidis and lower survivorship. Metabolic rate was higher and fat mass was lower in infected individuals and in animals in 24 °C treatments. Male L. aurea previously infected with B. dendrobatidis had smaller testes 5 months-post clearance of infection, an effect likely to translate to fitness costs in wild populations. These experiments demonstrate a physiological cost to sublethal B. dendrobatidis infection, which suggests a reduction in host fitness mediated by temperature in the host's environment regardless of whether infection leads to mortality.


Asunto(s)
Enfermedades de los Animales/microbiología , Anuros , Quitridiomicetos/crecimiento & desarrollo , Susceptibilidad a Enfermedades , Exposición a Riesgos Ambientales , Micosis/veterinaria , Animales , Micosis/microbiología , Análisis de Supervivencia , Temperatura
9.
Sci Rep ; 8(1): 12458, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127531

RESUMEN

Loss of fitness can be a consequence of selection for rapid dispersal ability in invasive species. Increased prevalence of spinal arthritis may occur in cane toad populations at the invasion front as a cost of increased invasiveness, but our knowledge of the ecological drivers of this condition is lacking. We aimed to determine the factors explaining the prevalence of spinal arthritis in populations across the Australian landscape. We studied populations across a gradient of invasion histories. We collected 2415 toads over five years and determined the presence and size of spondylosis for each individual. We examined the effect of host size, leg length and invasion history on the prevalence of spondylosis. Host size was a significant predictor of spondylosis across populations. Contrary to our expectation, the overall prevalence of spondylosis was not positively related to invasion history and did not correlate with toad relative leg length. Rather than invasion age, the latitude at which populations were sampled provided an alternate explanation for the prevalence of spondylosis in cane toad populations and suggested that the incidence of this condition did not increase as a physiological cost of invasion, but is instead related to physical variables, such as climate.


Asunto(s)
Bufo marinus/fisiología , Animales , Australia , Ecosistema , Especies Introducidas , Conducta Predatoria/fisiología , Espondiloartritis
10.
Biol Rev Camb Philos Soc ; 93(3): 1634-1648, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29575680

RESUMEN

The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long-term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life-history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on brackish water habitats are likely to be vulnerable to SLR because of their exclusive coastal distributions and adaptations to a narrow range of salinities. Most species, however, have not been documented in brackish water habitats but may also be highly vulnerable to projected SLR. Our analysis suggests that approximately 90% of coastal freshwater turtle species assessed in our study will be affected by a 1-m increase in global mean SLR by 2100. Most at risk are freshwater turtles found in New Guinea, Southeast Asia, Australia, and North and South America that may lose more than 10% of their present geographic range. In addition, turtle species in the families Chelidae, Emydidae, and Trionychidae may experience the greatest exposure to projected SLR in their present geographic ranges. Better understanding of survival, growth, reproductive and population-level responses to SLR will improve region-specific population viability predictions of freshwater turtles that are increasingly exposed to SLR. Integrating phylogenetic, physiological, and spatial frameworks to assess the effects of projected SLR may improve identification of vulnerable species, guilds, and geographic regions in need of conservation prioritization. We conclude that the use of brackish and marine environments by freshwater turtles provides clues about the evolutionary processes that have prolonged their existence, shaped their unique coastal distributions, and may prove useful in predicting their response to a changing world.


Asunto(s)
Cambio Climático , Salinidad , Tolerancia a la Sal/fisiología , Tortugas/fisiología , Agua/química , Animales , Agua Dulce
11.
Dev Comp Immunol ; 77: 280-286, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28870450

RESUMEN

Temperature variability, and in particular temperature decreases, can increase susceptibility of amphibians to infections by the fungus Batrachochytrium dendrobatidis (Bd). However, the effects of temperature shifts on the immune systems of Bd-infected amphibians are unresolved. We acclimated frogs to 16 °C and 26 °C (baseline), simultaneously transferred them to an intermediate temperature (21 °C) and inoculated them with Bd (treatment), and tracked their infection levels and white blood cell profiles over six weeks. Average weekly infection loads were consistently higher in 26°C-history frogs, a group that experienced a 5 °C temperature decrease, than in 16°C-history frogs, a group that experienced a 5 °C temperature increase, but this pattern only approached statistical significance. The 16°C-acclimated frogs had high neutrophil:lymphocyte (N:L) ratios (suggestive of a hematopoietic stress response) at baseline, which were conserved post-treatment. In contrast, the 26°C-acclimated frogs had low N:L ratios at baseline which reversed to high N:L ratios post-treatment (suggestive of immune system activation). Our results suggest that infections were less physiologically taxing for the 16°C-history frogs than the 26°C-history frogs because they had already adjusted immune parameters in response to challenging conditions (cold). Our findings provide a possible mechanistic explanation for observations that amphibians are more susceptible to Bd infection following temperature decreases compared to increases and underscore the consensus that increased temperature variability associated with climate change may increase the impact of infectious diseases.


Asunto(s)
Anuros/inmunología , Quitridiomicetos/inmunología , Frío/efectos adversos , Leucocitos/inmunología , Micosis/inmunología , Neutrófilos/inmunología , Aclimatación , Animales , Recuento de Células , Cambio Climático , Susceptibilidad a Enfermedades , Inmunidad
12.
Sci Rep ; 7(1): 9349, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839273

RESUMEN

Unprecedented global climate change and increasing rates of infectious disease emergence are occurring simultaneously. Infection with emerging pathogens may alter the thermal thresholds of hosts. However, the effects of fungal infection on host thermal limits have not been examined. Moreover, the influence of infections on the heat tolerance of hosts has rarely been investigated within the context of realistic thermal acclimation regimes and potential anthropogenic climate change. We tested for effects of fungal infection on host thermal tolerance in a model system: frogs infected with the chytrid Batrachochytrium dendrobatidis. Infection reduced the critical thermal maxima (CTmax) of hosts by up to ~4 °C. Acclimation to realistic daily heat pulses enhanced thermal tolerance among infected individuals, but the magnitude of the parasitism effect usually exceeded the magnitude of the acclimation effect. In ectotherms, behaviors that elevate body temperature may decrease parasite performance or increase immune function, thereby reducing infection risk or the intensity of existing infections. However, increased heat sensitivity from infections may discourage these protective behaviors, even at temperatures below critical maxima, tipping the balance in favor of the parasite. We conclude that infectious disease could lead to increased uncertainty in estimates of species' vulnerability to climate change.


Asunto(s)
Aclimatación , Cambio Climático , Susceptibilidad a Enfermedades , Infecciones/etiología , Termotolerancia , Anfibios/microbiología , Enfermedades de los Animales/etiología , Enfermedades de los Animales/microbiología , Animales
13.
FEMS Microbiol Lett ; 363(12)2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27190153

RESUMEN

A simple diagnosis of the presence or absence of an infection is an uninformative metric when individuals differ considerably in their tolerance to different infection loads or resistance to rates of disease progression. Models that incorporate the relationship between the progression of the infection with the potential alternate outcomes provide a far more powerful predictive tool than diagnosis alone. The global decline of amphibians has been amplified by Batrachochytrium dendrobatidis, a pathogen that can cause the fatal disease chytridiomycosis. We measured the infection load and observed signs of disease in Litoria aurea Receiver operating characteristic curves were used to quantify the dissimilarity between the infection loads of L. aurea that showed signs associated with chytridiomycosis and those that did not. Litoria aurea had a 78% probability of developing chytridiomycosis past a threshold of 68 zoospore equivalents (ZE) per swab and chytridiomycosis occurred within a variable range of 0.5-490 ZE. Studies should incorporate a species-specific threshold as a predictor of chytridiomycosis, rather than a binary diagnosis. Measures of susceptibility to chytridiomycosis must account not only for the ability of B. dendrobatidis to increase its abundance on the skin of amphibians but also to determine how each species tolerates these infection loads.


Asunto(s)
Anuros/microbiología , Quitridiomicetos/patogenicidad , Micosis/veterinaria , Animales , Animales Salvajes/microbiología , Susceptibilidad a Enfermedades , Viabilidad Microbiana , Micosis/microbiología , Curva ROC , Dispositivo de Identificación por Radiofrecuencia , Piel/microbiología , Especificidad de la Especie
14.
Conserv Physiol ; 4(1): cow042, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27757236

RESUMEN

Freshwater biota experience physiological challenges in regions affected by salinization, but often the effects on particular species are poorly understood. Freshwater turtles are of particular concern as they appear to have limited ability to cope with environmental conditions that are hyperosmotic to their body fluids. Here, we determined the physiological responses of two Australian freshwater chelid turtles, Emydura macquarii and Chelodina expansa, exposed to freshwater (0‰) and brackish water (15‰, representing a hyperosmotic environment). Brackish water is common in the Murray-Darling River Basin within the natural range of these species in Australia during periods of drought, yet it is unknown how well these species tolerate saline conditions. We hypothesized that these turtles would be unable to maintain homeostasis in the 15‰ water treatment and would suffer osmotic loss of water, increased ionic concentrations and a decrease in body mass. Results revealed that these turtles had elevated plasma concentrations of sodium, chloride, urea and uric acid in the plasma. Plasma ionic concentrations increased proportionally more in E. macquarii than in C. expansa. Individuals of both species reduced feeding in 15‰ water, indicating that behaviour may provide an additional means for freshwater turtles to limit ion/solute influx when in hyperosmotic environments. This osmoregulatory behaviour may allow for persistence of turtles in regions affected by salinization; however, growth rates and body condition may be affected in the long term. Although we demonstrate that these turtles have mechanisms to survive temporarily in saline waters, it is likely that sustained salinization of waterways will exceed their short- to medium-term capacity to survive increased salt levels, making salinization a potentially key threatening process for these freshwater reptiles.

15.
PLoS One ; 10(11): e0143733, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26605923

RESUMEN

Trapping is a common sampling technique used to estimate fundamental population metrics of animal species such as abundance, survival and distribution. However, capture success for any trapping method can be heavily influenced by individuals' behavioural plasticity, which in turn affects the accuracy of any population estimates derived from the data. Funnel trapping is one of the most common methods for sampling aquatic vertebrates, although, apart from fish studies, almost nothing is known about the effects of behavioural plasticity on trapping success. We used a full factorial experiment to investigate the effects that two common environmental parameters (predator presence and vegetation density) have on the trapping success of tadpoles. We estimated that the odds of tadpoles being captured in traps was 4.3 times higher when predators were absent compared to present and 2.1 times higher when vegetation density was high compared to low, using odds ratios based on fitted model means. The odds of tadpoles being detected in traps were also 2.9 times higher in predator-free environments. These results indicate that common environmental factors can trigger behavioural plasticity in tadpoles that biases trapping success. We issue a warning to researchers and surveyors that trapping biases may be commonplace when conducting surveys such as these, and urge caution in interpreting data without consideration of important environmental factors present in the study system. Left unconsidered, trapping biases in capture success have the potential to lead to incorrect interpretations of data sets, and misdirection of limited resources for managing species.


Asunto(s)
Anuros , Ambiente , Conducta Predatoria , Animales , Larva , Densidad de Población , Dinámica Poblacional
16.
Ecol Evol ; 4(8): 1361-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24834332

RESUMEN

Prompt detection of declines in abundance or distribution of populations is critical when managing threatened species that have high population turnover. Population monitoring programs provide the tools necessary to identify and detect decreases in abundance that will threaten the persistence of key populations and should occur in an adaptive management framework which designs monitoring to maximize detection and minimize effort. We monitored a population of Litoria aurea at Sydney Olympic Park over 5 years using mark-recapture, capture encounter, noncapture encounter, auditory, tadpole trapping, and dip-net surveys. The methods differed in the cost, time, and ability to detect changes in the population. Only capture encounter surveys were able to simultaneously detect a decline in the occupancy, relative abundance, and recruitment of frogs during the surveys. The relative abundance of L. aurea during encounter surveys correlated with the population size obtained from mark-recapture surveys, and the methods were therefore useful for detecting a change in the population. Tadpole trapping and auditory surveys did not predict overall abundance and were therefore not useful in detecting declines. Monitoring regimes should determine optimal survey times to identify periods where populations have the highest detectability. Once this has been achieved, capture encounter surveys provide a cost-effective method of effectively monitoring trends in occupancy, changes in relative abundance, and detecting recruitment in populations.

17.
J Comp Physiol B ; 183(2): 235-41, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23011356

RESUMEN

Variations in water potential have marked effects on aspects of embryological development in reptiles. Therefore variation in the salinity of the incubation environment is likely to have significant consequences on the early life stage. The combination of an extended incubation period, coupled with the real threat of soil salinisation within their range makes Chelodina expansa an ideal model to assess the influence of salinity on turtle embryology. We quantified the influence of salt on the development of C. expansa hatchlings in four substrate treatments varying in salinity. Embryos incubated in higher salinities had 39 % less survival than those incubated in substrates with freshwater. Hatchlings that emerged from eggs in saline treatments were smaller with higher concentrations of plasma sodium, chloride, urea, and potassium. The physiological effects of salinity mirror those of turtles incubated in drier media with low water potential. Salinisation of river banks has the potential to reduce hatching success and fitness of nesting reptiles.


Asunto(s)
Medios de Cultivo/química , Embrión no Mamífero/embriología , Desarrollo Embrionario/fisiología , Salinidad , Análisis de Varianza , Animales , Análisis Químico de la Sangre , Análisis de Supervivencia , Factores de Tiempo , Tortugas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA