Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373258

RESUMEN

A statewide genomic surveillance system for invasive Group A Streptococcus was implemented in Arizona in June 2019, resulting in 1,046 isolates being submitted for genomic analysis to characterize emm-types and identify transmission clusters. Eleven of the 32 identified distinct emm-types comprised >80% of samples, with 29.7% of all isolates being typed as emm49 (and its genetic derivative emm151). Phylogenetic analysis initially identified an emm49 genomic cluster of four isolates that rapidly expanded over subsequent months (June 2019-February 2020). Public health investigations identified epidemiologic links with three different long-term care facilities, resulting in specific interventions. Unbiased genomic surveillance allowed for identification and response to clusters that would have otherwise remained undetected.

2.
Emerg Infect Dis ; 29(1): 110-117, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573555

RESUMEN

Coccidioidomycosis is a fungal infection endemic to hot, arid regions of the western United States, northern Mexico, and parts of Central and South America. Sporadic cases outside these regions are likely travel-associated; alternatively, an infection could be acquired in as-yet unidentified newly endemic locales. A previous study of cases in nonendemic regions with patient self-reported travel history suggested that infections were acquired during travel to endemic regions. We sequenced 19 Coccidioides isolates from patients with known travel histories from that earlier investigation and performed phylogenetic analysis to identify the locations of potential source populations. Our results show that those isolates were phylogenetically linked to Coccidioides subpopulations naturally occurring in 1 of the reported travel locales, confirming that these cases were likely acquired during travel to endemic regions. Our findings demonstrate that genomic analysis is a useful tool for investigating travel-related coccidioidomycosis.


Asunto(s)
Coccidioidomicosis , Humanos , Estados Unidos/epidemiología , Coccidioidomicosis/epidemiología , Coccidioidomicosis/microbiología , Viaje , Filogenia , Enfermedad Relacionada con los Viajes , Coccidioides , Genómica
3.
J Antimicrob Chemother ; 77(3): 585-597, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34893830

RESUMEN

BACKGROUND: Echinocandin resistance represents a great concern, as these drugs are recommended as first-line therapy for invasive candidiasis. Echinocandin resistance is conferred by mutations in FKS genes. Nevertheless, pathways are crucial for enabling tolerance, evolution, and maintenance of resistance. Therefore, understanding the biological processes and proteins involved in the response to caspofungin may provide clues indicating new therapeutic targets. OBJECTIVES: We determined the resistance mechanism and assessed the proteome response to caspofungin exposure. We then evaluated the phenotypic impact of calcineurin inhibition by FK506 and cephalosporine A (CsA) on caspofungin-resistant Candida glabrata isolates. METHODS: Twenty-five genes associated with caspofungin resistance were analysed by NGS, followed by studies of the quantitative proteomic response to caspofungin exposure. Then, susceptibility testing of caspofungin in presence of FK506 and CsA was performed. The effects of calcineurin inhibitor/caspofungin combinations on heat stress (40°C), oxidative stress (0.2 and 0.4 mM menadione) and on biofilm formation (polyurethane catheter) were analysed. Finally, a Galleria mellonella model using blastospores (1 × 109 cfu/mL) was developed to evaluate the impact of the combinations on larval survival. RESULTS: F659-del was found in the FKS2 gene of resistant strains. Proteomics data showed some up-regulated proteins are involved in cell-wall biosynthesis, response to stress and pathogenesis, some of them being members of calmodulin-calcineurin pathway. Therefore, the impact of calmodulin inhibition was explored. Calmodulin inhibition restored caspofungin susceptibility, decreased capacity to respond to stress conditions, and reduced biofilm formation and in vivo pathogenicity. CONCLUSIONS: Our findings confirm that calmodulin-calcineurin-Crz1 could provide a relevant target in life-threatening invasive candidiasis.


Asunto(s)
Candidiasis Invasiva , Equinocandinas , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Inhibidores de la Calcineurina/farmacología , Inhibidores de la Calcineurina/uso terapéutico , Candida glabrata , Candidiasis Invasiva/tratamiento farmacológico , Caspofungina/farmacología , Caspofungina/uso terapéutico , Farmacorresistencia Fúngica/genética , Equinocandinas/farmacología , Equinocandinas/uso terapéutico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pruebas de Sensibilidad Microbiana , Proteómica
4.
BMC Microbiol ; 21(1): 174, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103012

RESUMEN

BACKGROUND: Molecular assays are important tools for pathogen detection but need to be periodically re-evaluated with the discovery of additional genetic diversity that may cause assays to exclude target taxa or include non-target taxa. A single well-developed assay can find broad application across research, clinical, and industrial settings. Pathogen prevalence within a population is estimated using such assays and accurate results are critical for formulating effective public health policies and guiding future research. A variety of assays for the detection of Staphylococcus aureus are currently available. The utility of commercial assays for research is limited, given proprietary signatures and lack of transparent validation. RESULTS: In silico testing of existing peer-reviewed assays show that most suffer from a lack of sensitivity and specificity. We found no assays that were specifically designed and validated for quantitative use. Here we present a qPCR assay, SaQuant, for the detection and quantification of S. aureus as might be collected on sampling swabs. Sensitivity and specificity of the assay was 95.6 and 99.9 %, respectively, with a limit of detection of between 3 and 5 genome equivalents and a limit of quantification of 8.27 genome equivalents. The presence of DNA from non-target species likely to be found in a swab sample, did not impact qualitative or quantitative abilities of the assay. CONCLUSIONS: This assay has the potential to serve as a valuable tool for the accurate detection and quantification of S. aureus collected from human body sites in order to better understand the dynamics of prevalence and transmission in community settings.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/aislamiento & purificación , ADN Bacteriano/genética , Humanos , Sensibilidad y Especificidad , Infecciones Estafilocócicas/diagnóstico , Staphylococcus aureus/genética
5.
Emerg Infect Dis ; 26(3): 606-609, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31922952

RESUMEN

The full geographic range of coccidioidomycosis is unknown, although it is most likely expanding with environmental change. We report an apparently autochthonous coccidioidomycosis patient from Spokane, Washington, USA, a location to which Coccidioides spp. are not known to be endemic.


Asunto(s)
Coccidioides/aislamiento & purificación , Coccidioidomicosis/diagnóstico , Neumonía/diagnóstico , Anciano de 80 o más Años , Antifúngicos/uso terapéutico , Coccidioidomicosis/diagnóstico por imagen , Coccidioidomicosis/tratamiento farmacológico , Tos/etiología , Diagnóstico Diferencial , Femenino , Fluconazol/uso terapéutico , Humanos , Neumonía/diagnóstico por imagen , Neumonía/tratamiento farmacológico , Washingtón
6.
Emerg Infect Dis ; 26(12): 2989-2993, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33219658

RESUMEN

The Onchocerca lupi nematode infects dogs, cats, and humans, but whether it can be spread by coyotes has been unknown. We conducted surveillance for O. lupi nematode infection in coyotes in the southwestern United States. We identified multiple coyote populations in Arizona and New Mexico as probable reservoirs for this species.


Asunto(s)
Coyotes , Enfermedades de los Perros , Oncocercosis , Animales , Arizona/epidemiología , Reservorios de Enfermedades , Enfermedades de los Perros/epidemiología , Perros , New Mexico , Onchocerca/genética , Oncocercosis/epidemiología , Oncocercosis/veterinaria , Sudoeste de Estados Unidos , Estados Unidos/epidemiología , Zoonosis
7.
Emerg Infect Dis ; 26(5): 937-944, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32310081

RESUMEN

Rhizopus spp. fungi are ubiquitous in the environment and a rare but substantial cause of infection in immunosuppressed persons and surgery patients. During 2005-2017, an abnormally high number of Rhizopus infections in surgery patients, with no apparent epidemiologic links, were reported in Argentina. To determine the likelihood of a common source of the cluster, we performed whole-genome sequencing on samples collected during 2006-2014. Most isolates were separated by >60 single-nucleotide polymorphisms, and we found no evidence for recombination or nonneutral mutation accumulation; these findings do not support common source or patient-to-patient transmission. Assembled genomes of most isolates were ≈25 Mbp, and multiple isolates had substantially larger assembled genomes (43-51 Mbp), indicative of infections with strain types that underwent genome expansion. Whole-genome sequencing has become an essential tool for studying epidemiology of fungal infections. Less discriminatory techniques may miss true relationships, possibly resulting in inappropriate attribution of point source.


Asunto(s)
Mucormicosis , Rhizopus , Argentina/epidemiología , Humanos , Mucormicosis/epidemiología , Rhizopus/genética
8.
Med Mycol ; 58(4): 552-559, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31506673

RESUMEN

Coccidioidomycosis is a debilitating fungal disease caused by inhalation of arthroconidia. We developed a novel approach for detection of airborne Coccidioides and used it to investigate the distribution of arthroconidia across the Phoenix, Arizona, metropolitan area. Air filters were collected daily from 21 stationary air-sampling units across the area: the first set collected before, during and after a large dust storm on August 25, 2015, and the second over the 45-day period September 25-November 8, 2016. Analysis of DNA extracted from the filters demonstrated that the day of the dust storm was not associated with increase of Coccidioides in air samples, although evidence of the low-level polymerase chain reaction (PCR) inhibition was observed in DNA extracted from samples collected on the day of the dust storm. Testing over 45 days identified uneven geographic distribution suggesting Coccidioides hot spots. In 2016, highest daily concentration of arthroconidia was observed between September 25-October 20, and only sporadic low levels were detected after that. These results provide evidence of seasonality and uneven spatial distribution of Coccidioides in the air. Our results demonstrate that routine air monitoring for arthroconidia is possible and provides an important tool for Coccidioides surveillance, which can address important questions about environmental exposure and human infection.


Asunto(s)
Microbiología del Aire , Coccidioides/genética , Estaciones del Año , Arizona , Ciudades , Coccidioides/aislamiento & purificación , ADN de Hongos/genética , Esporas Fúngicas/genética
9.
Fungal Genet Biol ; 133: 103266, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31491507

RESUMEN

There has been a considerable upsurge of extensive, treatment recalcitrant, dermatophytosis presenting as tinea corporis and tinea cruris in India since the past few years. Genome analysis of Trichophytonspecies causing severe superficial dermatophytosis in North India confirmed a unique clade related to the T.mentagrophytes/interdigitale complex, seeming to belong to an early diverging clade of the complex. The Indian Trichophyton species genomes were highly related showing only up to 42 SNPs between any two isolates confirming their clonal origin. Other genetic approaches such as ITS sequencing and multigene phylogeny used in this study were contradictory or inconclusive to show the differentiation of these isolates from T. mentagrophytes/T. interdigitale. Remarkably, high rates of resistance to all three commonly used oral antifungals, i.e., 36% for terbinafine (MICs 4 to ≥32 mg/L), 39.5% for fluconazole (MIC range 32 to ≥64 mg/L) and griseofulvin (Geometric mean MIC ≥ 4 mg/L) were observed. Two important amino acid substitutions (Leu393Phe or Phe397Leu) leading to a terbinafine resistant phenotype were found in the squalene epoxidase protein of all tested terbinafine resistant isolates. All 20 examined genomes presented a high mobility group (HMG) domain transcription factor gene corresponding to mating type (+). Of these, three isolates also showed positivity for both alpha-box and HMG in the genome which might indicate hybridization or an incomplete sexual cycle. Therefore, we highlight the potential of this organism to rapidly spread alleles that might be driving antifungal resistance among its population. This new population of Trichophyton with high rates of in vitro antifungal resistance seems to be driving an ongoing outbreak of dermatophytosis in India. Our study highlights difficulties in identifying isolates from the Trichophyton mentagrophytes/interdigitale clade of the genus using currently available molecular tools. High resistance rates of terbinafine warrant further clinical studies to assess its utility in the treatment of dermatophytosis caused by this clonal strain.


Asunto(s)
Antifúngicos/farmacología , Farmacorresistencia Fúngica , Tiña/microbiología , Trichophyton/efectos de los fármacos , Brotes de Enfermedades , Resistencia a Múltiples Medicamentos , Genoma Fúngico , Humanos , India/epidemiología , Pruebas de Sensibilidad Microbiana , Tipificación Molecular , Tiña/epidemiología , Trichophyton/clasificación , Trichophyton/genética
10.
Environ Sci Technol ; 52(16): 9056-9068, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30040385

RESUMEN

Need for global water security has spurred growing interest in wastewater reuse to offset demand for municipal water. While reclaimed (i.e., nonpotable) microbial water quality regulations target fecal indicator bacteria, opportunistic pathogens (OPs), which are subject to regrowth in distribution systems and spread via aerosol inhalation and other noningestion routes, may be more relevant. This study compares the occurrences of five OP gene markers ( Acanthamoeba spp., Legionella spp., Mycobacterium spp., Naegleria fowleri, Pseudomonas aeruginosa) in reclaimed versus potable water distribution systems and characterizes factors potentially contributing to their regrowth. Samples were collected over four sampling events at the point of compliance for water exiting treatment plants and at five points of use at four U.S. utilities bearing both reclaimed and potable water distribution systems. Reclaimed water systems harbored unique water chemistry (e.g., elevated nutrients), microbial community composition, and OP occurrence patterns compared to potable systems examined here and reported in the literature. Legionella spp. genes, Mycobacterium spp. genes, and total bacteria, represented by 16S rRNA genes, were more abundant in reclaimed than potable water distribution system samples ( p ≤ 0.0001). This work suggests that further consideration should be given to managing reclaimed water distribution systems with respect to nonpotable exposures to OPs.


Asunto(s)
Agua Potable , Legionella , Purificación del Agua , ARN Ribosómico 16S , Microbiología del Agua
11.
Environ Sci Technol ; 52(11): 6113-6125, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29741366

RESUMEN

Water reclamation provides a valuable resource for meeting nonpotable water demands. However, little is known about the potential for wastewater reuse to disseminate antibiotic resistance genes (ARGs). Here, samples were collected seasonally in 2014-2015 from four U.S. utilities' reclaimed and potable water distribution systems before treatment, after treatment, and at five points of use (POU). Shotgun metagenomic sequencing was used to profile the resistome (i.e., full contingent of ARGs) of a subset ( n = 38) of samples. Four ARGs ( qnrA, blaTEM, vanA, sul1) were quantified by quantitative polymerase chain reaction. Bacterial community composition (via 16S rRNA gene amplicon sequencing), horizontal gene transfer (via quantification of intI1 integrase and plasmid genes), and selection pressure (via detection of metals and antibiotics) were investigated as potential factors governing the presence of ARGs. Certain ARGs were elevated in all ( sul1; p ≤ 0.0011) or some ( blaTEM, qnrA; p ≤ 0.0145) reclaimed POU samples compared to corresponding potable samples. Bacterial community composition was weakly correlated with ARGs (Adonis, R2 = 0.1424-0.1734) and associations were noted between 193 ARGs and plasmid-associated genes. This study establishes that reclaimed water could convey greater abundances of certain ARGs than potable waters and provides observations regarding factors that likely control ARG occurrence in reclaimed water systems.


Asunto(s)
Antibacterianos , Agua , Farmacorresistencia Microbiana , Genes Bacterianos , ARN Ribosómico 16S , Aguas Residuales
12.
Emerg Infect Dis ; 22(4): 734-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26982330
13.
J Clin Microbiol ; 54(10): 2582-96, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27510832

RESUMEN

Health care-acquired infections (HAIs) kill tens of thousands of people each year and add significantly to health care costs. Multidrug-resistant and epidemic strains are a large proportion of HAI agents, and multidrug-resistant strains of Klebsiella pneumoniae, a leading HAI agent, have caused an urgent public health crisis. In the health care environment, patient colonization by K. pneumoniae precedes infection, and transmission via colonization leads to outbreaks. Periodic patient screening for K. pneumoniae colonization has the potential to curb the number of HAIs. In this report, we describe the design and validation of KlebSeq, a highly informative screening tool that detects Klebsiella species and identifies clinically important strains and characteristics by using highly multiplexed amplicon sequencing without a live-culturing step. We demonstrate the utility of this tool on several complex specimen types, including urine, wound swabs and tissue, and several types of respiratory and fecal specimens, showing K. pneumoniae species and clonal group identification and antimicrobial resistance and virulence profiling, including capsule typing. Use of this amplicon sequencing tool to screen patients for Klebsiella carriage could inform health care staff of the risk of infection and outbreak potential. KlebSeq also serves as a model for next-generation molecular tools for public health and health care, as expansion of this tool can be used for several other HAI agents or applications.


Asunto(s)
Infección Hospitalaria/diagnóstico , Monitoreo Epidemiológico , Técnicas de Genotipaje/métodos , Infecciones por Klebsiella/diagnóstico , Klebsiella pneumoniae/aislamiento & purificación , Tamizaje Masivo/métodos , Técnicas de Diagnóstico Molecular/métodos , Farmacorresistencia Bacteriana , Humanos , Klebsiella pneumoniae/genética , Análisis de Secuencia de ADN/métodos , Factores de Virulencia/análisis
14.
Hereditas ; 153: 11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28096773

RESUMEN

BACKGROUND: Prevention of nosocomial transmission of infections is a central responsibility in the healthcare environment, and accurate identification of transmission events presents the first challenge. Phylogenetic analysis based on whole genome sequencing provides a high-resolution approach for accurately relating isolates to one another, allowing precise identification or exclusion of transmission events and sources for nearly all cases. We sequenced 24 methicillin-resistant Staphylococcus aureus (MRSA) genomes to retrospectively investigate a suspected point source of three surgical site infections (SSIs) that occurred over a one-year period. The source of transmission was believed to be a surgical team member colonized with MRSA, involved in all surgeries preceding the SSI cases, who was subsequently decolonized. Genetic relatedness among isolates was determined using whole genome single nucleotide polymorphism (SNP) data. RESULTS: Whole genome SNP typing (WGST) revealed 283 informative SNPs between the surgical team member's isolate and the closest SSI isolate. The second isolate was 286 and the third was thousands of SNPs different, indicating the nasal carriage strain from the surgical team member was not the source of the SSIs. Given the mutation rates estimated for S. aureus, none of the SSI isolates share a common ancestor within the past 16 years, further discounting any common point source for these infections. The decolonization procedures and resources spent on the point source infection control could have been prevented if WGST was performed at the time of the suspected transmission, instead of retrospectively. CONCLUSIONS: Whole genome sequence analysis is an ideal method to exclude isolates involved in transmission events and nosocomial outbreaks, and coupling this method with epidemiological data can determine if a transmission event occurred. These methods promise to direct infection control resources more appropriately.


Asunto(s)
Portador Sano/microbiología , Personal de Salud , Staphylococcus aureus Resistente a Meticilina/genética , Polimorfismo de Nucleótido Simple , Infecciones Estafilocócicas/microbiología , Infección de la Herida Quirúrgica/microbiología , Técnicas de Tipificación Bacteriana , Infección Hospitalaria/microbiología , ADN Bacteriano/genética , Genoma Bacteriano , Humanos , Staphylococcus aureus Resistente a Meticilina/clasificación , Filogenia , Estudios Retrospectivos , Análisis de Secuencia de ADN
15.
Sci Rep ; 14(1): 1311, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225347

RESUMEN

Coccidioides is the fungal causative agent of Valley fever, a primarily pulmonary disease caused by inhalation of fungal arthroconidia, or spores. Although Coccidioides has been an established pathogen for 120 years and is responsible for hundreds of thousands of infections per year, little is known about when and where infectious Coccidioides arthroconidia are present within the ambient air in endemic regions. Long-term air sampling programs provide a means to investigate these characteristics across space and time. Here we present data from > 18 months of collections from 11 air sampling sites across the Phoenix, Arizona, metropolitan area. Overall, prevalence was highly variable across space and time with no obvious spatial or temporal correlations. Several high prevalence periods were identified at select sites, with no obvious spatial or temporal associations. Comparing these data with weather and environmental factor data, wind gusts and temperature were positively associated with Coccidioides detection, while soil moisture was negatively associated with Coccidioides detection. These results provide critical insights into the frequency and distribution of airborne arthroconidia and the associated risk of inhalation and potential disease that is present across space and time in a highly endemic locale.


Asunto(s)
Coccidioidomicosis , Coccidioidomicosis/epidemiología , Coccidioidomicosis/microbiología , Coccidioides , Arizona/epidemiología , Tiempo (Meteorología) , Temperatura , Esporas Fúngicas
16.
BMC Infect Dis ; 13: 339, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23879266

RESUMEN

BACKGROUND: spa typing is a common genotyping tool for methicillin-resistant Staphylococcus aureus (MRSA) in Europe. Given the high prevalence of dominant clones, spa-typing is proving to be limited in its ability to distinguish outbreak isolates from background isolates. New molecular tools need to be employed to improve subtyping of dominant local MRSA strains (e.g., spa type t003). METHODS: Phylogenetically critical, or canonical, SNPs (can-SNPs) were identified as subtyping targets through sequence analysis of 40 MRSA whole genomes from Luxembourg. Real-time PCR assays were designed around target SNPs and validated using a repository of 240 previously sub-typed and epidemiologically characterized Luxembourg MRSA isolates, including 153 community and hospital isolates, 69 isolates from long term care (LTC) facilities, and 21 prospectively analyzed MRSA isolates. Selected isolates were also analyzed by whole genome SNP typing (WGST) for comparison to the SNP assays and other subtyping techniques. RESULTS: Fourteen real-time PCR assays were developed and validated, including two assays to determine presence of spa t003 or t008. The other twelve assays successfully provided a high degree of resolution within the t003 subtype. WGST analysis of the LTC facility isolates provided greater resolution than other subtyping tools, identifying clusters indicative of ongoing transmission within LTC facilities. CONCLUSIONS: canSNP-based PCR assays are useful for local level MRSA phylotyping, especially in the presence of one or more dominant clones. The assays designed here can be easily adapted for investigating t003 MRSA strains in other regions in Western Europe. WGST provides substantially better resolution than other typing methods.


Asunto(s)
Genoma Bacteriano , Staphylococcus aureus Resistente a Meticilina/genética , Técnicas de Tipificación Bacteriana , Europa (Continente)/epidemiología , Genotipo , Técnicas de Genotipaje , Humanos , Luxemburgo/epidemiología , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Filogenia , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Análisis de Secuencia de ADN , Infecciones Estafilocócicas/epidemiología
17.
mSphere ; 8(2): e0065922, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36853059

RESUMEN

The first case of coronavirus disease 2019 (COVID-19) within the White Mountain Apache Tribe (WMAT) in Arizona was diagnosed almost 1 month after community transmission was recognized in the state. Aggressive contact tracing allowed for robust genomic epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and subsequent phylogenetic analyses implicated only two virus introductions, which resulted in the spread of two unique viral lineages on the reservation. The phylogenies of these lineages reflect the nature of the introductions, the remoteness of the community, and the extraordinarily high attack rates. The timing and space-limited nature of the outbreaks validate the public health tracing efforts involved, which were illustrated by multiple short transmission chains over a period of several weeks, eventually resulting in extinction of the lineages. Comprehensive sampling and successful infection control efforts are illustrated in both the effective population size analyses and the limited mortality outcomes. The rapid spread and high attack rates of the two lineages may be due to a combination of sociological determinants of the WMAT and a seemingly enhanced transmissibility. The SARS-CoV-2 genomic epidemiology of the WMAT demonstrates a unique local history of the pandemic and highlights the extraordinary and successful efforts of their public health response. IMPORTANCE This article discusses the introduction and spread of two unique viral lineages of SARS-CoV-2 within the White Mountain Apache Tribe in Arizona. Both genomic sequencing and traditional epidemiological strategies (e.g., contract tracing) were used to understand the nature of the spread of both lineages. Beyond providing a robust genomic analysis of the epidemiology of the outbreaks, this work also highlights the successful efforts of the local public health response.


Asunto(s)
COVID-19 , Humanos , Arizona/epidemiología , COVID-19/epidemiología , Genómica , Filogenia , SARS-CoV-2/genética
18.
Cell Rep Methods ; 3(5): 100463, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37323571

RESUMEN

The lack of preparedness for detecting and responding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen (i.e., COVID-19) has caused enormous harm to public health and the economy. Testing strategies deployed on a population scale at day zero, i.e., the time of the first reported case, would be of significant value. Next-generation sequencing (NGS) has such capabilities; however, it has limited detection sensitivity for low-copy-number pathogens. Here, we leverage the CRISPR-Cas9 system to effectively remove abundant sequences not contributing to pathogen detection and show that NGS detection sensitivity of SARS-CoV-2 approaches that of RT-qPCR. The resulting sequence data can also be used for variant strain typing, co-infection detection, and individual human host response assessment, all in a single molecular and analysis workflow. This NGS work flow is pathogen agnostic and, therefore, has the potential to transform how large-scale pandemic response and focused clinical infectious disease testing are pursued in the future.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Pandemias , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
19.
Microb Genom ; 9(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37987646

RESUMEN

Carbapenem-resistant Enterobacterales (CRE) are an urgent public health threat. Genomic sequencing is an important tool for investigating CRE. Through the Division of Healthcare Quality Promotion Sentinel Surveillance system, we collected CRE and carbapenem-susceptible Enterobacterales (CSE) from nine clinical laboratories in the USA from 2013 to 2016 and analysed both phenotypic and genomic sequencing data for 680 isolates. We describe the molecular epidemiology and antimicrobial susceptibility testing (AST) data of this collection of isolates. We also performed a phenotype-genotype correlation for the carbapenems and evaluated the presence of virulence genes in Klebsiella pneumoniae complex isolates. These AST and genomic sequencing data can be used to compare and contrast CRE and CSE at these sites and serve as a resource for the antimicrobial resistance research community.


Asunto(s)
Antibacterianos , Gammaproteobacteria , Estados Unidos/epidemiología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Mapeo Cromosómico , Carbapenémicos/farmacología
20.
Microb Genom ; 9(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37043380

RESUMEN

Genomic analyses are widely applied to epidemiological, population genetic and experimental studies of pathogenic fungi. A wide range of methods are employed to carry out these analyses, typically without including controls that gauge the accuracy of variant prediction. The importance of tracking outbreaks at a global scale has raised the urgency of establishing high-accuracy pipelines that generate consistent results between research groups. To evaluate currently employed methods for whole-genome variant detection and elaborate best practices for fungal pathogens, we compared how 14 independent variant calling pipelines performed across 35 Candida auris isolates from 4 distinct clades and evaluated the performance of variant calling, single-nucleotide polymorphism (SNP) counts and phylogenetic inference results. Although these pipelines used different variant callers and filtering criteria, we found high overall agreement of SNPs from each pipeline. This concordance correlated with site quality, as SNPs discovered by a few pipelines tended to show lower mapping quality scores and depth of coverage than those recovered by all pipelines. We observed that the major differences between pipelines were due to variation in read trimming strategies, SNP calling methods and parameters, and downstream filtration criteria. We calculated specificity and sensitivity for each pipeline by aligning three isolates with chromosomal level assemblies and found that the GATK-based pipelines were well balanced between these metrics. Selection of trimming methods had a greater impact on SAMtools-based pipelines than those using GATK. Phylogenetic trees inferred by each pipeline showed high consistency at the clade level, but there was more variability between isolates from a single outbreak, with pipelines that used more stringent cutoffs having lower resolution. This project generated two truth datasets useful for routine benchmarking of C. auris variant calling, a consensus VCF of genotypes discovered by 10 or more pipelines across these 35 diverse isolates and variants for 2 samples identified from whole-genome alignments. This study provides a foundation for evaluating SNP calling pipelines and developing best practices for future fungal genomic studies.


Asunto(s)
Candida auris , Candida auris/genética , Genoma Fúngico , Filogenia , Polimorfismo de Nucleótido Simple , Humanos , Candidiasis/tratamiento farmacológico , Candidiasis/epidemiología , Brotes de Enfermedades , Farmacorresistencia Fúngica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA