Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(7): e3002658, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991106

RESUMEN

Tetrapods (amphibians, reptiles, birds, and mammals) are model systems for global biodiversity science, but continuing data gaps, limited data standardisation, and ongoing flux in taxonomic nomenclature constrain integrative research on this group and potentially cause biased inference. We combined and harmonised taxonomic, spatial, phylogenetic, and attribute data with phylogeny-based multiple imputation to provide a comprehensive data resource (TetrapodTraits 1.0.0) that includes values, predictions, and sources for body size, activity time, micro- and macrohabitat, ecosystem, threat status, biogeography, insularity, environmental preferences, and human influence, for all 33,281 tetrapod species covered in recent fully sampled phylogenies. We assess gaps and biases across taxa and space, finding that shared data missing in attribute values increased with taxon-level completeness and richness across clades. Prediction of missing attribute values using multiple imputation revealed substantial changes in estimated macroecological patterns. These results highlight biases incurred by nonrandom missingness and strategies to best address them. While there is an obvious need for further data collection and updates, our phylogeny-informed database of tetrapod traits can support a more comprehensive representation of tetrapod species and their attributes in ecology, evolution, and conservation research.


Asunto(s)
Biodiversidad , Aves , Mamíferos , Filogenia , Reptiles , Animales , Reptiles/clasificación , Anfibios , Ecosistema , Sesgo , Humanos , Tamaño Corporal
2.
Syst Biol ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289860

RESUMEN

How and why certain groups become speciose is a key question in evolutionary biology. Novel traits that enable diversification by opening new ecological niches are likely important mechanisms. However, ornamental traits can also promote diversification by opening up novel sensory niches and thereby creating novel inter-specific interactions. More specifically, ornamental colours may enable more precise and/or easier species recognition, and may act as key innovations by increasing the number of species-specific patterns and promoting diversification. While the influence of colouration on diversification is well-studied, the influence of the mechanisms that produce those colours (e.g. pigmentary, nanostructural) is less so, even though the ontogeny and evolution of these mechanisms differ. We estimated a new phylogenetic tree for 121 sunbird species and combined colour data of 106 species with a range of phylogenetic tools to test the hypothesis that the evolution of novel colour mechanisms increases diversification in sunbirds, one of the most colourful bird clades. Results suggest that (1) the evolution of novel colour mechanisms expands the visual sensory niche, increasing the number of achievable colours. (2) Structural colouration diverges more readily across the body than pigment-based colouration, enabling an increase in colour complexity. (3) Novel colour mechanisms might minimize trade-offs between natural and sexual selection such that colour can function both as camouflage and conspicuous signal. (4) Despite structural colours being more colourful and mobile, only melanin-based colouration is positively correlated with net diversification. Together, these findings explain why colour distances increase with increasing number of sympatric species, even though packing of colour space would predict otherwise.

3.
Proc Natl Acad Sci U S A ; 119(34): e2122667119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35972961

RESUMEN

Field biology is an area of research that involves working directly with living organisms in situ through a practice known as "fieldwork." Conducting fieldwork often requires complex logistical planning within multiregional or multinational teams, interacting with local communities at field sites, and collaborative research led by one or a few of the core team members. However, existing power imbalances stemming from geopolitical history, discrimination, and professional position, among other factors, perpetuate inequities when conducting these research endeavors. After reflecting on our own research programs, we propose four general principles to guide equitable, inclusive, ethical, and safe practices in field biology: be collaborative, be respectful, be legal, and be safe. Although many biologists already structure their field programs around these principles or similar values, executing equitable research practices can prove challenging and requires careful consideration, especially by those in positions with relatively greater privilege. Based on experiences and input from a diverse group of global collaborators, we provide suggestions for action-oriented approaches to make field biology more equitable, with particular attention to how those with greater privilege can contribute. While we acknowledge that not all suggestions will be applicable to every institution or program, we hope that they will generate discussions and provide a baseline for training in proactive, equitable fieldwork practices.


Asunto(s)
Discusiones Bioéticas , Biología , Biología/ética , Humanos
4.
Mol Biol Evol ; 40(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36578177

RESUMEN

Insights into the processes underpinning convergent evolution advance our understanding of the contributions of ancestral, introgressed, and novel genetic variation to phenotypic evolution. Phylogenomic analyses characterizing genome-wide gene tree heterogeneity can provide first clues about the extent of ILS and of introgression and thereby into the potential of these processes or (in their absence) the need to invoke novel mutations to underpin convergent evolution. Here, we were interested in understanding the processes involved in convergent evolution in open-habitat chats (wheatears of the genus Oenanthe and their relatives). To this end, based on whole-genome resequencing data from 50 taxa of 44 species, we established the species tree, characterized gene tree heterogeneity, and investigated the footprints of ILS and introgression within the latter. The species tree corroborates the pattern of abundant convergent evolution, especially in wheatears. The high levels of gene tree heterogeneity in wheatears are explained by ILS alone only for 30% of internal branches. For multiple branches with high gene tree heterogeneity, D-statistics and phylogenetic networks identified footprints of introgression. Finally, long branches without extensive ILS between clades sporting similar phenotypes provide suggestive evidence for the role of novel mutations in the evolution of these phenotypes. Together, our results suggest that convergent evolution in open-habitat chats involved diverse processes and highlight that phenotypic diversification is often complex and best depicted as a network of interacting lineages.


Asunto(s)
Ecosistema , Genoma , Filogenia , Análisis de Secuencia de ADN , Evolución Molecular
5.
Proc Biol Sci ; 291(2015): 20231243, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38229520

RESUMEN

Thermal soaring conditions above the sea have long been assumed absent or too weak for terrestrial migrating birds, forcing obligate soarers to take long detours and avoid sea-crossing, and facultative soarers to cross exclusively by costly flapping flight. Thus, while atmospheric convection does develop at sea and is used by some seabirds, it has been largely ignored in avian migration research. Here, we provide direct evidence for routine thermal soaring over open sea in the common crane, the heaviest facultative soarer known among terrestrial migrating birds. Using high-resolution biologging from 44 cranes tracked across their transcontinental migration over 4 years, we show that soaring performance was no different over sea than over land in mid-latitudes. Sea-soaring occurred predominantly in autumn when large water-air temperature difference followed mid-latitude cyclones. Our findings challenge a fundamental migration research paradigm and suggest that obligate soarers avoid sea-crossing not due to the absence or weakness of thermals but due to their low frequency, for which they cannot compensate with prolonged flapping. Conversely, facultative soarers other than cranes should also be able to use thermals over the sea. Marine cold air outbreaks, imperative to global energy budget and climate, may also be important for bird migration.


Asunto(s)
Aves , Vuelo Animal , Animales , Clima
6.
Glob Chang Biol ; 30(1): e17126, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273486

RESUMEN

Combating the current biodiversity crisis requires the accurate documentation of population responses to human-induced ecological change. However, our ability to pinpoint population responses to human activities is often limited to the analysis of populations studied well after the fact. Museum collections preserve a record of population responses to anthropogenic change that can provide critical baseline data on patterns of genetic diversity, connectivity, and population structure prior to the onset of human perturbation. Here, we leverage a spatially replicated time series of specimens to document population genomic responses to the destruction of nearly 90% of coastal habitats occupied by the Savannah sparrow (Passerculus sandwichensis) in California. We sequenced 219 sparrows collected from 1889 to 2017 across the state of California using an exome capture approach. Spatial-temporal analyses of genetic diversity found that the amount of habitat lost was not predictive of genetic diversity loss. Sparrow populations from southern California historically exhibited lower levels of genetic diversity and experienced the most significant temporal declines in genetic diversity. Despite experiencing the greatest levels of habitat loss, we found that genetic diversity in the San Francisco Bay area remained relatively high. This was potentially related to an observed increase in gene flow into the Bay Area from other populations. While gene flow may have minimized genetic diversity declines, we also found that immigration from inland freshwater-adapted populations into tidal marsh populations led to the erosion of divergence at loci associated with tidal marsh adaptation. Shifting patterns of gene flow through time in response to habitat loss may thus contribute to negative fitness consequences and outbreeding depression. Together, our results underscore the importance of tracing the genomic trajectories of multiple populations over time to address issues of fundamental conservation concern.


Asunto(s)
Gorriones , Humedales , Animales , Humanos , Metagenómica , Ecosistema , Gorriones/genética , Agua Dulce , Variación Genética
7.
J Evol Biol ; 37(4): 401-413, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38373243

RESUMEN

Evolutionary radiations provide important insights into species diversification, which is especially true of adaptive radiations. New World wood warblers (Parulidae) are a family of small, insectivorous, forest-dwelling passerine birds, often considered an exemplar of adaptive radiation due to their rapid diversification followed by a slowdown. However, they deviate from the expectations of an adaptive radiation scenario due to the lack of conspicuous morphological and ecological differentiation. We fitted several macroevolutionary models to trait data in 105 species of wood warblers. We tested whether morphological traits underwent an early burst of evolution (suggesting adaptation to new ecological niches in adaptive radiations) and whether song and colour underwent a diversity-dependent acceleration of trait evolutionary rate (consistent with reproductive interference driving signal evolution). Morphology and song evolved gradually under stabilizing selection, suggesting niche conservatism, with morphology possibly acting as a constraint on song evolution. In contrast, many feather colour traits underwent a diversity-dependent burst of evolution occurring late in the clade's history. We suggest that a two-step process has led to the remarkable diversification of wood warblers. First, their early diversification probably proceeded by allopatric speciation. Second, feather colour divergence likely occurred during secondary contact after range expansion. This diversification of signalling traits might have facilitated species coexistence, in combination with behavioural niche partitioning. Wood warblers seem to present characteristics of both adaptive and non-adaptive radiations.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Evolución Biológica , Filogenia , Pájaros Cantores/genética , Passeriformes/genética , Color , Especiación Genética
8.
J Hered ; 115(1): 130-138, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-37793045

RESUMEN

The little pocket mouse, Perognathus longimembris, and its nine congeners are small heteromyid rodents found in arid and seasonally arid regions of Western North America. The genus is characterized by behavioral and physiological adaptations to dry and often harsh environments, including nocturnality, seasonal torpor, food caching, enhanced osmoregulation, and a well-developed sense of hearing. Here we present a genome assembly of Perognathus longimembris longimembris generated from PacBio HiFi long read and Omni-C chromatin-proximity sequencing as part of the California Conservation Genomics Project. The assembly has a length of 2.35 Gb, contig N50 of 11.6 Mb, scaffold N50 of 73.2 Mb, and includes 93.8% of the BUSCO Glires genes. Interspersed repetitive elements constitute 41.2% of the genome. A comparison with the highly endangered Pacific pocket mouse, P. l. pacificus, reveals broad synteny. These new resources will enable studies of local adaptation, genetic diversity, and conservation of threatened taxa.


Asunto(s)
Cromosomas , Genoma , Animales , Ratones , Genómica , América del Norte
9.
Am Nat ; 201(2): E23-E40, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724466

RESUMEN

AbstractAnimal coloration serves many biological functions and must therefore balance potentially competing selective pressures. For example, many animals have camouflage in which coloration matches the visual background that predators scan for prey. However, different colors reflect different amounts of solar radiation and may therefore have thermoregulatory implications as well. In this study, we examined geographic variation in dorsal patterning, coloration, and solar reflectance among horned larks (Eremophila alpestris) of the western United States. We found that plumage brightness was positively associated with soil granularity, aridity, and temperature. Plumage redness-both in terms of saturation (i.e., chroma) and hue-was positively associated with soil redness and temperature, while plumage patterning was positively associated with soil granularity. Together, these plumage-environment associations support both background matching and Gloger's rule, a widespread ecogeographic pattern in animal coloration. We also constructed thermoregulatory models that estimated cooling benefits provided by solar reflectance profiles of the dorsal plumage of each specimen based on the collection site. We found increased cooling benefits in hotter, more arid environments. Finally, cooling benefits were positively associated with residual brightness, such that individuals that were brighter than expected based on environmental conditions also had higher cooling benefits, suggesting a trade-off between camouflage and thermoregulation. Together, these data suggest that natural selection has balanced camouflage and thermoregulation in horned larks, and they illustrate how multiple competing evolutionary pressures may interact to shape geographic variation in adaptive phenotypes.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Regulación de la Temperatura Corporal , Evolución Biológica , Suelo , Pigmentación
10.
Proc Biol Sci ; 290(2011): 20231914, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37964520

RESUMEN

Convergent evolution is widely regarded as a signature of adaptation. However, testing the adaptive consequences of convergent phenotypes is challenging, making it difficult to exclude non-adaptive explanations for convergence. Here, we combined feather reflectance spectra and phenotypic trajectory analyses with visual and thermoregulatory modelling to test the adaptive significance of dark plumage in songbirds of the California Channel Islands. By evolving dark dorsal plumage, island birds are generally less conspicuous to visual-hunting raptors in the island environment than mainland birds. Dark dorsal plumage also reduces the energetic demands associated with maintaining homeothermy in the cool island climate. We also found an unexpected pattern of convergence, wherein the most divergent island populations evolved greater reflectance of near-infrared radiation. However, our heat flux models indicate that elevated near-infrared reflectance is not adaptive. Analysis of feather microstructure suggests that mainland-island differences are related to coloration of feather barbs and barbules rather than their structure. Our results indicate that adaptive and non-adaptive mechanisms interact to drive plumage evolution in this system. This study sheds light on the mechanisms driving the association between dark colour and wet, cold environments across the tree of life, especially in island birds.


Asunto(s)
Pájaros Cantores , Animales , Pájaros Cantores/genética , Plumas , Fenotipo , Regulación de la Temperatura Corporal , Islas Anglonormandas , Pigmentación/genética , Islas
11.
J Hered ; 114(4): 367-384, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-36512345

RESUMEN

To avoid the worst outcomes of the current biodiversity crisis we need a deep understanding of population responses to human-induced ecological change. Rapidly expanding access to genomic resources for nonmodel taxa promises to play a unique role in meeting this goal. In particular, the increasing feasibility of sequencing DNA from historical specimens enables direct measures of population responses to the past century of anthropogenic change that will inform management strategies and refine projections of species responses to future environmental change. In this review, we discuss the methods that can be used to generate genome-scale data from the hundreds of millions of specimens housed in natural history collections around the world. We then highlight recent studies that utilize genomic data from specimens to address questions of fundamental importance to biodiversity conservation. Finally, we emphasize how traditional motivations of museum collectors, such as studies of geographic variation and community-wide inventories, provide unique opportunities for broad scale comparisons of genomic responses to anthropogenic change across time. We conclude that as sequencing technologies become increasingly accessible and more researchers take advantage of this resource, the importance of collections to the conservation of biodiversity will continue to grow.


Asunto(s)
Biodiversidad , Genómica , Humanos , Genómica/métodos , Genoma , Ecología , Museos , Conservación de los Recursos Naturales
12.
J Hered ; 114(4): 418-427, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-36763048

RESUMEN

The California quail (Callipepla californica) is an iconic native bird of scrub and oak woodlands in California and the Baja Peninsula of Mexico. Here, we report a draft reference assembly for the species generated from PacBio HiFi long read and Omni-C chromatin-proximity sequencing data as part of the California Conservation Genomics Project (CCGP). Sequenced reads were assembled into 321 scaffolds totaling 1.08 Gb in length. Assembly metrics indicate a highly contiguous and complete assembly with a contig N50 of 5.5 Mb, scaffold N50 of 19.4 Mb, and BUSCO completeness score of 96.5%. Transposable elements (TEs) occupy 16.5% of the genome, more than previous Odontophoridae quail assemblies but in line with estimates of TE content for recent long-read assemblies of chicken and Peking duck. Together these metrics indicate that the present assembly is more complete than prior reference assemblies generated for Odontophoridae quail. This reference will serve as an essential resource for studies on local adaptation, phylogeography, and conservation genetics in this species of significant biological and recreational interest.


Asunto(s)
Genómica , Codorniz , Animales , Codorniz/genética , Cromosomas , Elementos Transponibles de ADN , California
13.
J Hered ; 114(5): 549-560, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37395718

RESUMEN

The Steller's jay is a familiar bird of western forests from Alaska south to Nicaragua. Here, we report a draft reference assembly for the species generated from PacBio HiFi long-read and Omni-C chromatin-proximity sequencing data as part of the California Conservation Genomics Project (CCGP). Sequenced reads were assembled into 352 scaffolds totaling 1.16 Gb in length. Assembly metrics indicate a highly contiguous and complete assembly with a contig N50 of 7.8 Mb, scaffold N50 of 25.8 Mb, and BUSCO completeness score of 97.2%. Repetitive elements span 16.6% of the genome including nearly 90% of the W chromosome. Compared with high-quality assemblies from other members of the family Corvidae, the Steller's jay genome contains a larger proportion of repetitive elements than 4 crow species (Corvus), but a lower proportion of repetitive elements than the California scrub-jay (Aphelocoma californica). This reference genome will serve as an essential resource for future studies on speciation, local adaptation, phylogeography, and conservation genetics in this species of significant biological interest.


Asunto(s)
Genoma , Passeriformes , Animales , Genómica , Secuencia de Bases , Cromosomas , Cromosomas Sexuales
14.
J Hered ; 114(6): 669-680, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37589384

RESUMEN

We announce the assembly of the first de novo reference genome for the California Scrub-Jay (Aphelocoma californica). The genus Aphelocoma comprises four currently recognized species including many locally adapted populations across Mesoamerica and North America. Intensive study of Aphelocoma has revealed novel insights into the evolutionary mechanisms driving diversification in natural systems. Additional insights into the evolutionary history of this group will require continued development of high-quality, publicly available genomic resources. We extracted high molecular weight genomic DNA from a female California Scrub-Jay from northern California and generated PacBio HiFi long-read data and Omni-C chromatin conformation capture data. We used these data to generate a de novo partially phased diploid genome assembly, consisting of two pseudo-haplotypes, and scaffolded them using inferred physical proximity information from the Omni-C data. The more complete pseudo-haplotype assembly (arbitrarily designated "Haplotype 1") is 1.35 Gb in total length, highly contiguous (contig N50 = 11.53 Mb), and highly complete (BUSCO completeness score = 97%), with comparable scaffold sizes to chromosome-level avian reference genomes (scaffold N50 = 66.14 Mb). Our California Scrub-Jay assembly is highly syntenic with the New Caledonian Crow reference genome despite ~10 million years of divergence, highlighting the temporal stability of the avian genome. This high-quality reference genome represents a leap forward in publicly available genomic resources for Aphelocoma, and the family Corvidae more broadly. Future work using Aphelocoma as a model for understanding the evolutionary forces generating and maintaining biodiversity across phylogenetic scales can now benefit from a highly contiguous, in-group reference genome.


Asunto(s)
Genoma , Passeriformes , Animales , Femenino , Filogenia , Cromosomas , California
15.
Proc Natl Acad Sci U S A ; 117(36): 22303-22310, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817535

RESUMEN

Penguins are the only extant family of flightless diving birds. They currently comprise at least 18 species, distributed from polar to tropical environments in the Southern Hemisphere. The history of their diversification and adaptation to these diverse environments remains controversial. We used 22 new genomes from 18 penguin species to reconstruct the order, timing, and location of their diversification, to track changes in their thermal niches through time, and to test for associated adaptation across the genome. Our results indicate that the penguin crown-group originated during the Miocene in New Zealand and Australia, not in Antarctica as previously thought, and that Aptenodytes is the sister group to all other extant penguin species. We show that lineage diversification in penguins was largely driven by changing climatic conditions and by the opening of the Drake Passage and associated intensification of the Antarctic Circumpolar Current (ACC). Penguin species have introgressed throughout much of their evolutionary history, following the direction of the ACC, which might have promoted dispersal and admixture. Changes in thermal niches were accompanied by adaptations in genes that govern thermoregulation and oxygen metabolism. Estimates of ancestral effective population sizes (Ne ) confirm that penguins are sensitive to climate shifts, as represented by three different demographic trajectories in deeper time, the most common (in 11 of 18 penguin species) being an increased Ne between 40 and 70 kya, followed by a precipitous decline during the Last Glacial Maximum. The latter effect is most likely a consequence of the overall decline in marine productivity following the last glaciation.


Asunto(s)
Evolución Molecular , Genoma/genética , Spheniscidae , Animales , Regiones Antárticas , Australia , Cambio Climático , Ecosistema , Estudio de Asociación del Genoma Completo , Nueva Zelanda , Filogenia , Selección Genética/genética , Spheniscidae/clasificación , Spheniscidae/genética , Spheniscidae/fisiología
16.
Mol Ecol ; 31(6): 1783-1799, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35048444

RESUMEN

Genetic structure and phenotypic variation among populations are affected by both geographic distance and environmental variation across species' distributions. Understanding the relative contributions of isolation by distance (IBD) and isolation by environment (IBE) is important for elucidating population dynamics across habitats and ecological gradients. In this study, we compared phenotypic and genetic variation among Horned Lark (Eremophila alpestris) populations from 10 sites encompassing an elevational gradient from low-elevation desert scrub in Death Valley (285 a.s.l.) to high-elevation meadows in the White Mountains of the Sierra Nevada of California (greater than 3000 m a.s.l.). Using a ddRAD data set of 28,474 SNPs aligned to a high-quality reference genome, we compared genetic structure with elevational, environmental, and spatial distance to quantify how different aspects of the landscape drive genomic and phenotypic differentiation in Horned Larks. We found larger-bodied birds were associated with sites that had less seasonality and higher annual precipitation, and longer spurs occurred in soils with more clay and silt content, less sand, and finer fragments. Larks have large neo-sex chromosomes, and we found that associations with elevation and environmental variation were much stronger among neo-sex chromosomes compared to autosomes. Furthermore, we found that putative chromosomal translocations, fusions, and inversions were associated with elevation and may underlie local adaptation across an elevational gradient in Horned Larks. Our results suggest that genetic variation in Horned Larks is affected more by IBD than IBE, but specific phenotypes and genomic regions-particually on neo-sex chromosomes-bear stronger associations with the environment.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Ambiente , Passeriformes/genética , Fenotipo , Cromosomas Sexuales , Pájaros Cantores/genética
17.
Proc Biol Sci ; 288(1963): 20212062, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34784761

RESUMEN

Learned traits are thought to be subject to different evolutionary dynamics than other phenotypes, but their evolutionary tempo and mode has received little attention. Learned bird song has been thought to be subject to rapid and constant evolution. However, we know little about the evolutionary modes of learned song divergence over long timescales. Here, we provide evidence that aspects of the territorial songs of Eastern Afromontane sky island sunbirds Cinnyris evolve in a punctuated fashion, with periods of stasis of the order of hundreds of thousands of years or more, broken up by evolutionary pulses. Stasis in learned songs is inconsistent with learned traits being subject to constant or frequent change, as would be expected if selection does not constrain song phenotypes over evolutionary timescales. Learned song may instead follow a process resembling peak shifts on adaptive landscapes. While much research has focused on the potential for rapid evolution in bird song, our results suggest that selection can tightly constrain the evolution of learned songs over long timescales. More broadly, these results demonstrate that some aspects of highly variable, plastic traits can exhibit punctuated evolution, with stasis over long time periods.


Asunto(s)
Passeriformes , Vocalización Animal , Animales , Evolución Biológica , Aprendizaje , Fenotipo
18.
Mol Ecol ; 30(19): 4723-4739, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34260783

RESUMEN

Human activities shape resources available to wild animals, impacting diet and probably altering their microbiota and overall health. We examined drivers shaping microbiota profiles of common cranes (Grus grus) in agricultural habitats by comparing gut microbiota and crane movement patterns (GPS-tracking) over three periods of their migratory cycle, and by analysing the effect of artificially supplemented food provided as part of a crane-agriculture management programme. We sampled faecal droppings in Russia (nonsupplemented, premigration) and in Israel in late autumn (nonsupplemented, postmigration) and winter (supplemented and nonsupplemented, wintering). As supplemented food is typically homogenous, we predicted lower microbiota diversity and different composition in birds relying on supplementary feeding. We did not observe changes in microbial diversity with food supplementation, as diversity differed only in samples from nonsupplemented wintering sites. However, both food supplementation and season affected bacterial community composition and led to increased abundance of specific genera (mostly Firmicutes). Cranes from the nonsupplemented groups spent most of their time in agricultural fields, probably feeding on residual grain when available, while food-supplemented cranes spent most of their time at the feeding station. Thus, nonsupplemented and food-supplemented diets probably diverge only in winter, when crop rotation and depletion of anthropogenic resources may lead to a more variable diet in nonsupplemented sites. Our results support the role of diet in structuring bacterial communities and show that they undergo both seasonal and human-induced shifts. Movement analyses provide important clues regarding host diet and behaviour towards understanding how human-induced changes shape the gut microbiota in wild animals.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Aves , Suplementos Dietéticos , Humanos , ARN Ribosómico 16S/genética
19.
Mol Ecol ; 29(7): 1358-1371, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32115796

RESUMEN

The behavioural ecology of host species is likely to affect their microbial communities, because host sex, diet, physiology, and movement behaviour could all potentially influence their microbiota. We studied a wild population of barn owls (Tyto alba) and collected data on their microbiota, movement, diet, size, coloration, and reproduction. The composition of bacterial species differed by the sex of the host and female owls had more diverse bacterial communities than their male counterparts. The abundance of two families of bacteria, Actinomycetaceae and Lactobacillaceae, also varied between the sexes, potentially as a result of sex differences in hormones and immunological function, as has previously been found with Lactobacillaceae in the microbiota of mice. Male and female owls did not differ in the prey they brought to the nest, which suggests that dietary differences are unlikely to underlie the differences in their microbiota. The movement behaviour of the owls was associated with the host microbiota in both males and females because owls that moved further from their nest each day had more diverse bacterial communities than owls that stayed closer to their nests. This novel result suggests that the movement ecology of hosts can impact their microbiota, potentially on the basis of their differential encounters with new bacterial species as the hosts move and forage across the landscape. Overall, we found that many aspects of the microbial community are correlated with the behavioural ecology of the host and that data on the microbiota can aid in generating new hypotheses about host behaviour.


Asunto(s)
Microbiota , Actividad Motora , Caracteres Sexuales , Estrigiformes/microbiología , Animales , Dieta/veterinaria , Femenino , Israel , Masculino , Reproducción
20.
Mol Ecol ; 29(10): 1873-1889, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32282951

RESUMEN

Gut microbial diversity is thought to reflect the co-evolution of microbes and their hosts as well as current host-specific attributes such as genetic background and environmental setting. To explore interactions among these parameters, we characterized variation in gut microbiome composition of California voles (Microtus californicus) across a contact zone between two recently diverged lineages of this species. Because this contact zone contains individuals with mismatched mitochondrial-nuclear genomes (cybrids), it provides an important opportunity to explore how different components of the genotype contribute to gut microbial diversity. Analyses of bacterial 16S rRNA sequences and joint species distribution modelling revealed that host genotypes and genetic differentiation among host populations together explained more than 50% of microbial community variation across our sampling transect. The ranked importance (most to least) of factors contributing to gut microbial diversity in our study populations were: genome-wide population differentiation, local environmental conditions, and host genotypes. However, differences in microbial communities among vole populations (ß-diversity) did not follow patterns of lineage divergence (i.e., phylosymbiosis). Instead, among-population variation was best explained by the spatial distribution of hosts, as expected if the environment is a primary source of gut microbial diversity (i.e., dispersal limitation hypothesis). Across the contact zone, several bacterial taxa differed in relative abundance between the two parental lineages as well as among individuals with mismatched mitochondrial and nuclear genomes. Thus, genetic divergence among host lineages and mitonuclear genomic mismatches may also contribute to microbial diversity by altering interactions between host genomes and gut microbiota (i.e., hologenome speciation hypothesis).


Asunto(s)
Arvicolinae/microbiología , Microbioma Gastrointestinal , Animales , California , Microbioma Gastrointestinal/genética , Mamíferos , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA