Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 209(3): 465-475, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35725270

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease characterized by T and B cell responses to proteins expressed by insulin-producing pancreatic ß cells, inflammatory lesions within islets (insulitis), and ß cell loss. We previously showed that Ag-specific tolerance targeting single ß cell protein epitopes is effective in preventing T1D induced by transfer of monospecific diabetogenic CD4 and CD8 transgenic T cells to NOD.scid mice. However, tolerance induction to individual diabetogenic proteins, for example, GAD65 (glutamic acid decarboxylase 65) or insulin, has failed to ameliorate T1D both in wild-type NOD mice and in the clinic. Initiation and progression of T1D is likely due to activation of T cells specific for multiple diabetogenic epitopes. To test this hypothesis, recombinant insulin, GAD65, and chromogranin A proteins were encapsulated within poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (COUR CNPs) to assess regulatory T cell induction, inhibition of Ag-specific T cell responses, and blockade of T1D induction/progression in NOD mice. Whereas treatment of NOD mice with CNPs containing a single protein inhibited the corresponding Ag-specific T cell response, inhibition of overt T1D development only occurred when all three diabetogenic proteins were included within the CNPs (CNP-T1D). Blockade of T1D following CNP-T1D tolerization was characterized by regulatory T cell induction and a significant decrease in both peri-insulitis and immune cell infiltration into pancreatic islets. As we have recently published that CNP treatment is both safe and induced Ag-specific tolerance in a phase 1/2a celiac disease clinical trial, Ag-specific tolerance induced by nanoparticles encapsulating multiple diabetogenic proteins is a promising approach to T1D treatment.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Nanopartículas , Animales , Diabetes Mellitus Experimental/patología , Epítopos , Insulina , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas
2.
Antimicrob Agents Chemother ; 59(1): 622-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25385113

RESUMEN

A recent report found that generic parenteral vancomycin products may not have in vivo efficacies equivalent to those of the innovator in a neutropenic murine thigh infection model despite having similar in vitro microbiological activities and murine serum pharmacokinetics. We compared the in vitro and in vivo activities of six of the parenteral vancomycin products available in the United States. The in vitro assessments for the potencies of the vancomycin products included MIC/minimal bactericidal concentration (MBC) determinations, quantifying the impact of human and murine serum on the MIC values, and time-kill studies. Also, the potencies of the vancomycin products were quantified with a biological assay, and the human and mouse serum protein binding rates for the vancomycin products were measured. The in vivo studies included dose-ranging experiments with the 6 vancomycin products for three isolates of Staphylococcus aureus in a neutropenic mouse thigh infection model. The pharmacokinetics of the vancomycin products were assessed in infected mice by population pharmacokinetic modeling. No differences were seen across the vancomycin products with regard to any in vitro evaluation. Inhibitory sigmoid maximal bacterial kill (Emax) modeling of the relationship between vancomycin dosage and the killing of the bacteria in mice in vivo yielded similar Emax and EC50 (drug exposure driving one-half Emax) values for bacterial killing. Further, there were no differences in the pharmacokinetic clearances of the 6 vancomycin products from infected mice. There were no important pharmacodynamic differences in the in vitro or in vivo activities among the six vancomycin products evaluated.


Asunto(s)
Staphylococcus aureus/efectos de los fármacos , Vancomicina/farmacocinética , Animales , Proteínas Sanguíneas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Infusiones Parenterales , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Estados Unidos , Vancomicina/farmacología
3.
Anal Chem ; 87(14): 6995-9, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26086621

RESUMEN

Mass spectrometry has gained widespread acceptance for the characterization of protein therapeutics as a part of the regulatory approval process. Improvements in mass spectrometer sensitivity, resolution, and mass accuracy have enabled more detailed and confident analysis of larger biomolecules for confirming amino acid sequences, assessing sequence variants, and characterizing post translational modifications. This work demonstrates the suitability of a combined approach using intact MS and multistage top down MS/MS analyses for the characterization of a protein therapeutic drug. The protein therapeutic granulocyte-colony stimulating factor was analyzed using a Thermo Fusion Tribrid mass spectrometer using a multistage top down MS approach. Intact mass analysis identified the presence of two disulfide bonds based on exact mass shifts while a combined collision induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron transfer dissociation (ETD) MS/MS approach obtained 80% protein sequence coverage. Isolating MS/MS fragments for MS(3) analysis using HCD or CID increased the sequence coverage to 89%. 95% sequence coverage was obtained by reducing human granulocyte-colony stimulating factor (G-CSF) prior to MS/MS and MS(3) analysis to specifically target the residues between the disulfide bonds. The use of this combined intact MS and multistage top down MS approach allows for rapid and accurate determination of the primary sequence of a protein therapeutic drug product.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/metabolismo , Fragmentos de Péptidos/análisis , Espectrometría de Masas en Tándem , Secuencia de Aminoácidos , Factor Estimulante de Colonias de Granulocitos/química , Humanos , Datos de Secuencia Molecular , Peso Molecular , Fragmentos de Péptidos/aislamiento & purificación
4.
Anal Bioanal Chem ; 407(1): 79-94, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25200070

RESUMEN

The size, heterogeneity, and biological production process of protein therapeutics like monoclonal antibodies create unique challenges for their analysis and regulation compared with small molecules. Complete structural characterization of a molecule 1000-fold heavier than aspirin is no small feat. Biological post-translational modifications such as glycosylation further complicate their characterization and regulation. Even approved protein therapeutics are known to contain multiple structural variants in differing amounts. Structural modification occurs during production and storage as well as within patients after administration. Thus, the goals of manufacturers and regulators are to control and characterize this heterogeneity, not take on the impossible task of eliminating it. The aim of this review is to describe the structural heterogeneities known to occur with immunoglobulin G (IgG), note current detection and analytical strategies, establish their causes, and define their potential effects on the ultimate safety, purity, and potency of antibody therapeutics when known.


Asunto(s)
Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Glicosilación , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/uso terapéutico
5.
Anal Bioanal Chem ; 407(3): 749-59, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25260409

RESUMEN

This work describes orthogonal NMR and MS tests for the structure and composition of the drug protamine sulfate derived from chum salmon. The spectral response pattern obtained by 1D-(1)H-NMR and MS methods from salmon protamine, a mixture of four predominant peptide chains, is dependent on the amino acid sequence and abundance of each peptide. Thus, an assay was developed based on the ratios of alanine, glycine and arginine amino acid residue NMR peaks (relative to the arginine CδH proton signal) in this mixture that are unique to the salmon source. In addition, MS analysis provided sensitive sequence determination and impurity analysis based on shifts from exact masses. Spectra from protamine sulfate active pharmaceutical ingredient (API) suppliers and from a formulated drug product purchased from the US market were examined. Based on these marketplace survey data, NMR acceptance criteria for chum salmon derived protamine sulfate could be based on the absence of aromatic amino acid signals and on ratios of Ala ßH/Arg δH, Gly αH/Arg δH and Arg αH/Arg δH integrated areas of 2.4 ± 1%, 9.4 ± 3% and 50 ± 5%, respectively. For MS, acceptance criteria based on the presence of specific mass to charge (m/z) ratio peaks (m/z = +8 of 530.455, 540.841, 532.208 and 508.950) could be used for the four major peptides present in the mixture with relative abundances of 17 ± 1%, 31 ± 2%, 27 ± 1% and 25 ± 3%, respectively. The specificity of the combined NMR and MS assay was tested by comparison to data obtained from herring protamine which contains a different mixture of peptides with related amino acid sequences. Both assays were able to clearly distinguish protamine derived from these different natural sources.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Oncorhynchus keta , Protaminas/análisis , Secuencia de Aminoácidos , Aminoácidos/análisis , Animales , Técnicas de Química Analítica , Preparaciones Farmacéuticas/análisis , Tecnología Farmacéutica/métodos
6.
Anal Bioanal Chem ; 407(29): 8647-59, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26458562

RESUMEN

Glatiramer acetate (GA) is a mixture of synthetic copolymers consisting of four amino acids (glutamic acid, lysine, alanine, and tyrosine) with a labeled molecular weight range of 5000 to 9000 Da. GA is marketed as Copaxone™ by Teva for the treatment of multiple sclerosis. Here, the agency has evaluated the structure and composition of GA and a commercially available comparator, Copolymer-1. Modern analytical technologies which can characterize these complex mixtures are desirable for analysis of their comparability and structural "sameness." In the studies herein, a molecular fingerprinting approach is taken using mass-accurate mass spectrometry (MS) analysis, nuclear magnetic resonance (NMR) (1D-(1)H-NMR, 1D-(13)C-NMR, and 2D NMR), and asymmetric field flow fractionation (AFFF) coupled with multi-angle light scattering (MALS) for an in-depth characterization of three lots of the marketplace drug and a formulated sample of the comparator. Statistical analyses were applied to the MS and AFFF-MALS data to assess these methods' ability to detect analytical differences in the mixtures. The combination of multiple orthogonal measurements by liquid chromatography coupled with MS (LC-MS), AFFF-MALS, and NMR on the same sample set was found to be fit for the intended purpose of distinguishing analytical differences between these complex mixtures of peptide chains.


Asunto(s)
Acetato de Glatiramer/química , Inmunosupresores/química , Fraccionamiento de Campo-Flujo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas
7.
Rapid Commun Mass Spectrom ; 28(15): 1757-63, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24975256

RESUMEN

RATIONALE: Protamine sulfate is a peptide drug product consisting of multiple basic peptides. As traditional high-performance liquid chromatography (HPLC) separation methods may not resolve these peptides, as well as any possible peptide-related impurities, a method utilizing top-down mass spectrometry was developed for the characterization of complex peptide drug products, including any low-level impurities, which is described in this study. METHODS: Herring protamine sulfate was used as a model system to demonstrate the applicability of the method. Direct infusion mass spectrometry and tandem mass spectrometry (MS/MS) on a high-resolution, mass accurate instrument with electron transfer dissociation (ETD) were used to identify all the species present in the herring protamine sulfate sample. Identifications were made based on mass accuracy analysis as well as MS/MS fragmentation patterns. RESULTS: Complete sequence coverage of the three abundant herring protamine peptides was obtained using the top-down ETD-MS/MS method, which also identified a discrepancy with the published herring protamine peptide sequences. Additionally, three low-abundance related peptide species were also identified and fully characterized. These three peptides had not previously been reported as herring protamine peptides, but could be related to the published sequences through amino acid additions and/or substitutions. CONCLUSIONS: A method for the characterization of protamine, a complex peptide drug product, was developed that can be extended to other complex peptide or protein drug products. The selectivity and sensitivity of this method improves a regulator's ability to identify peptide impurities not previously observed using the established methods and presents an opportunity to better understand the composition of complex peptide drug products.


Asunto(s)
Contaminación de Medicamentos/prevención & control , Protaminas/análisis , Protaminas/química , Análisis de Secuencia de Proteína/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Evaluación Preclínica de Medicamentos/métodos , Transporte de Electrón , Datos de Secuencia Molecular
8.
Anal Bioanal Chem ; 406(26): 6559-67, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24264620

RESUMEN

The FDA has approved more than 100 protein and peptide drugs with hundreds more in the pipeline (Lanthier et al. in Nat Rev Drug Discov 7(9):733-737, 2008). Many of these originator biologic products are now coming off patent and are being manufactured by alternate methods than the innovator as follow-on drugs. Because changes to the production method often lead to subtle differences (e.g., degradation products, different posttranslational modifications or impurities) in the therapeutic (Schiestl et al. in Nat Biotechnol 29(4):310-312, 2011), there is a critical need to define techniques to test and insure the quality of these drugs. In addition, the emergence of protein therapeutics manufactured by unapproved methodologies presents an ongoing and growing regulatory challenge. In this work, high-resolution mass spectrometry was used to determine the presence or absence of posttranslational modifications for one FDA-approved and three foreign-sourced, unapproved filgrastim products. Circular dichroism (CD) was used to compare the secondary structure and probe the temperature stability of these products. Native 2D (1)H,(15)N-heteronuclear singular quantum coherence (HSQC) NMR test was applied to these samples to compare the higher-order structure of the four products. Finally, a cell proliferation assay was performed on the filgrastims to compare their bioactivity, and stressed filgrastim was tested in the bioassay to better understand the effects of changes in protein structure on activity. The results showed that orthogonal approaches are capable of characterizing the physiochemical properties of this protein drug and assessing the impact of structural changes on filgrastim purity and potency.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/química , Factor Estimulante de Colonias de Granulocitos/farmacología , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dicroismo Circular , Filgrastim , Espectrometría de Masas/métodos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología
9.
Regul Toxicol Pharmacol ; 70(1): 182-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25010377

RESUMEN

The clinical use of local anesthetic products to anesthetize mucous membranes has been associated with methemoglobinemia (MetHba), a serious condition in which the blood has reduced capacity to carry oxygen. An evaluation of spontaneous adverse event reporting of MetHba submitted to FDA through 2013 identified 375 reports associated with benzocaine and 16 reports associated with lidocaine. The current study was performed to determine the relative ability of benzocaine and lidocaine to produce methemoglobin (MetHb) in vitro. Incubation of 500µM benzocaine with whole human blood and pooled human liver S9 over 5h resulted in MetHb levels equaling 39.8±1.2% of the total hemoglobin. No MetHb formation was detected for 500µM lidocaine under the same conditions. Because liver S9 does not readily form lidocaine hydrolytic metabolites based on xylidine, a primary metabolic pathway, 500µM xylidine was directly incubated with whole blood and S9. Under these conditions MetHb levels of 4.4±0.4% were reached by 5h. Studies with recombinant cytochrome P450 revealed benzocaine to be extensively metabolized by CYP 1A2, with 2B6, 2C19, 2D6, and 2E1 also having activity. We conclude that benzocaine produces much more MetHb in in vitro systems than lidocaine or xylidine and that benzocaine should be more likely to cause MetHba in vivo as well.


Asunto(s)
Anestésicos Locales/toxicidad , Benzocaína/toxicidad , Lidocaína/toxicidad , Metahemoglobinemia/inducido químicamente , Anestésicos Locales/metabolismo , Compuestos de Anilina/metabolismo , Benzocaína/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Técnicas In Vitro , Lidocaína/metabolismo , Hígado/metabolismo , Metahemoglobina/metabolismo
10.
Anal Chem ; 85(3): 1531-9, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23249142

RESUMEN

The application of multiplexed isobaric tandem mass tag (TMT) labeling and an LTQ Orbitrap XL ETD (electron transfer dissociation) hybrid mass spectrometer as a direct approach for qualitative and quantitative characterization of glycoproteins is reported. Bovine fetuin was used as a model glycoprotein in this study. For online liquid chromatography-mass spectrometry (LC-MS) analysis, high-resolution, mass accurate full scan MS spectra were acquired in the Orbitrap mass analyzer followed by data-dependent tandem mass spectrometry (MS/MS) with alternating collision-induced dissociation (CID), ETD, and higher-energy collisional dissociation (HCD) scans. An additional in-source dissociation scan was used as a highly sensitive and selective detection method for eluting glycosylated peptides. By alternatively using three different dissociation methods, 23 glycoforms from all 5 corresponding glycopeptides were identified from a trypsin digest of bovine fetuin. With ETD, labile glycans were retained without any signs of carbohydrate cleavage with concurrent fragmentation of the peptide backbone. Glycosylation sites were clearly localized from the ETD fragmentation data. Glycan structure elucidation was accomplished using CID. The CID experiments generated fragment ions predominantly from cleavage of glycosidic bonds without breaking the peptide bond. Novel to this method, the TMT labeling protocol was modified and adapted for higher labeling efficiency, and a TriVersa NanoMate was used to reinfuse samples to improve ETD and HCD spectra of glycopeptides. Quantification with TMT was verified based on the HCD spectra from multiple nonglycopeptides and glycopeptides. This method can be used as a qualitative and quantitative technique for direct characterization of glycoproteins and has applicability for detection of counterfeit glycoprotein drug products.


Asunto(s)
Glicoproteínas/análisis , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Animales , Bovinos , Cromatografía Liquida/métodos , Transporte de Electrón/fisiología , Glicoproteínas/metabolismo , Datos de Secuencia Molecular
11.
Analyst ; 138(10): 3058-65, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23579346

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS) is an information rich analytical tool that can provide fast, robust and sensitive characterization of protein therapeutics for quality assurance and structural comparison. Herein, structural characterization of two anti-CD20 monoclonal antibodies obtained from two different sources was performed using a middle-down LC-MS strategy to determine if they can be analytically differentiated. Through the use of a specific enzymatic digestion method using IdeS with subsequent LC-MS analysis, we show that the anti-CD20 monoclonal antibody that has been approved by the FDA can be partially characterized and differentiated analytically from an Indian sourced product that lacks FDA approval. In comparison to the FDA-approved product, differential modifications to both the N- and C-termini result in increased charge heterogeneity for the Indian product. In addition, significant differences in the intensities of the observed glycoforms between the two antibodies were detected. While this study assesses only one lot of each of a FDA approved drug product and the Indian sourced drug product, the observed differences may represent process specific fingerprints that could be useful for surveillance purposes.


Asunto(s)
Anticuerpos Monoclonales Humanizados/análisis , Anticuerpos Monoclonales/análisis , Antígenos CD20/química , Reacciones Antígeno-Anticuerpo , Cromatografía Liquida , Espectrometría de Masas , Estructura Molecular , Trastuzumab
12.
Antimicrob Agents Chemother ; 56(6): 2824-30, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22371900

RESUMEN

In response to a published concern about the potency and quality of generic vancomycin products, the United States Food and Drug Administration investigated a small sampling of the vancomycin products available in North America with regard to purity, content, and potency. To facilitate identification of impurities, a new liquid chromatography method was developed using high-resolution mass spectrometry in addition to diode array detection to characterize impurities in several commercial products. Furthermore, a microbiological assay was utilized to link the analytical profiles with an in vitro potency. All products tested met the quality specifications outlined in the United States Pharmacopeia (USP) (vancomycin hydrochloride for injection monograph) for impurities and potency (USP, Vancomycin hydrochloride for injection. United States Pharmacopeia and National Formulary, vol USP 34-NF 29, 2011).


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Seguridad de Productos para el Consumidor , Control de Calidad , Estados Unidos , Vancomicina
13.
Anal Chem ; 84(18): 8045-51, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22916992

RESUMEN

Implementation of modern analytical techniques, such as intact mass spectrometry, may allow for more detailed quality assessments of protein therapeutics. The complexity of the protein therapeutic manufacturing process as well as the sensitivity of these drugs to different storage conditions can lead to the presence of several undesired products, including truncations, degradation products, byproducts, and differentially modified protein variants that are difficult to detect by peptide mapping. Intact mass spectrometry can be used to identify the intact protein composition, inclusive of post-translational modifications (PTMs) but can also generate a chemical fingerprint of the different protein species present in a given sample. In this work, we systematically evaluated the influence of multiple charge states, multiple isotopes per charge state, and operating resolution on the suitability of intact mass spectrometry for quantitative analysis using insulin and somatotropin as model systems. Standard curves could be generated using absolute intensity data or using the relative ratio between the analyte and internal standard. These methods demonstrate the validity of quantitative intact mass spectrometry for the analysis of protein therapeutic drugs, thus providing a foundation for future comparative methods.


Asunto(s)
Preparaciones Farmacéuticas/análisis , Proteínas/análisis , Espectrometría de Masa por Ionización de Electrospray , Cromatografía Líquida de Alta Presión , Insulina/análisis , Mapeo Peptídico , Péptidos/análisis , Procesamiento Proteico-Postraduccional
14.
JCI Insight ; 7(15)2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35737459

RESUMEN

Older people exhibit dysregulated innate immunity to respiratory viral infections, including influenza and SARS-CoV-2, and show an increase in morbidity and mortality. Nanoparticles are a potential practical therapeutic that could reduce exaggerated innate immune responses within the lungs during viral infection. However, such therapeutics have not been examined for effectiveness during respiratory viral infection, particular in aged hosts. Here, we employed a lethal model of influenza viral infection in vulnerable aged mice to examine the ability of biodegradable, cargo-free nanoparticles, designated ONP-302, to resolve innate immune dysfunction and improve outcomes during infection. We administered ONP-302 via i.v. injection to aged mice at day 3 after infection, when the hyperinflammatory innate immune response was already established. During infection, we found that ONP-302 treatment reduced the numbers of inflammatory monocytes within the lungs and increased their number in both the liver and spleen, without impacting viral clearance. Importantly, cargo-free nanoparticles reduced lung damage, reduced histological lung inflammation, and improved gas exchange and, ultimately, the clinical outcomes in influenza-infected aged mice. In conclusion, ONP-302 improves outcomes in influenza-infected aged mice. Thus, our study provides information concerning a practical therapeutic, which, if translated clinically, could improve disease outcomes for vulnerable older patients suffering from respiratory viral infections.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Gripe Humana , Nanopartículas , Infecciones por Orthomyxoviridae , Animales , Humanos , Pulmón/patología , Ratones , Monocitos , SARS-CoV-2
15.
J Cancer ; 13(6): 1933-1944, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399717

RESUMEN

In this study, we evaluated the ability of negatively charged bio-degradable nanoparticles, ONP- 302, to inhibit tumor growth. Therapeutic treatment with ONP-302 in vivo resulted in a marked delay in tumor growth in three different syngeneic tumor models in immunocompetent mice. ONP- 302 efficacy persisted with depletion of CD8+ T cells in immunocompetent mice and also was effective in immune deficient mice. Examination of ONP-302 effects on components of the tumor microenvironment (TME) were explored. ONP-302 treatment caused a gene expression shift in TAMs toward the pro-inflammatory M1 type and substantially inhibited the expression of genes associated with the pro-tumorigenic function of CAFs. ONP-302 also induced apoptosis in CAFs in the TME. Together, these data support further development of ONP-302 as a novel first-in- class anti-cancer therapeutic that can be used as a single-agent as well as in combination therapies for the treatment of solid tumors due to its ability to modulate the TME.

16.
Front Immunol ; 13: 887649, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059473

RESUMEN

Cancer treatment utilizing infusion therapies to enhance the patient's own immune response against the tumor have shown significant functionality in a small subpopulation of patients. Additionally, advances have been made in the utilization of nanotechnology for the treatment of disease. We have previously reported the potent effects of 3-4 daily intravenous infusions of immune modifying poly(lactic-co-glycolic acid) (PLGA) nanoparticles (IMPs; named ONP-302) for the amelioration of acute inflammatory diseases by targeting myeloid cells. The present studies describe a novel use for ONP-302, employing an altered dosing scheme to reprogram myeloid cells resulting in significant enhancement of tumor immunity. ONP-302 infusion decreased tumor growth via the activation of the cGAS/STING pathway within myeloid cells, and subsequently increased NK cell activation via an IL-15-dependent mechanism. Additionally, ONP-302 treatment increased PD-1/PD-L1 expression in the tumor microenvironment, thereby allowing for functionality of anti-PD-1 for treatment in the B16.F10 melanoma tumor model which is normally unresponsive to monotherapy with anti-PD-1. These findings indicate that ONP-302 allows for tumor control via reprogramming myeloid cells via activation of the STING/IL-15/NK cell mechanism, as well as increasing anti-PD-1 response rates.


Asunto(s)
Melanoma Experimental , Nanopartículas , Animales , Humanos , Inmunoterapia/métodos , Interleucina-15 , Melanoma Experimental/terapia , Proteínas de la Membrana/metabolismo , Células Mieloides/metabolismo , Nucleotidiltransferasas/metabolismo , Microambiente Tumoral
17.
Anal Chem ; 80(21): 8055-63, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18841935

RESUMEN

For automated production of tandem mass spectrometric data for proteins and peptides >3 kDa at >50 000 resolution, a dual online-offline approach is presented here that improves upon standard liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategies. An integrated hardware and software infrastructure analyzes online LC-MS data and intelligently determines which targets to interrogate offline using a posteriori knowledge such as prior observation, identification, and degree of characterization. This platform represents a way to implement accurate mass inclusion and exclusion lists in the context of a proteome project, automating collection of high-resolution MS/MS data that cannot currently be acquired on a chromatographic time scale at equivalent spectral quality. For intact proteins from an acid extract of human nuclei fractionated by reversed-phase liquid chromatography (RPLC), the automated offline system generated 57 successful identifications of protein forms arising from 30 distinct genes, a substantial improvement over online LC-MS/MS using the same 12 T LTQ FT Ultra instrument. Analysis of human nuclei subjected to a shotgun Lys-C digest using the same RPLC/automated offline sampling identified 147 unique peptides containing 29 co- and post-translational modifications. Expectation values ranged from 10 (-5) to 10 (-99), allowing routine multiplexed identifications.


Asunto(s)
Internet/instrumentación , Espectrometría de Masas en Tándem/instrumentación , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas/análisis , Proteínas/química , Proteómica
18.
Anal Chem ; 80(8): 2857-66, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18351787

RESUMEN

Characterizing combinations of coding polymorphisms (cSNPs), alternative splicing and post-translational modifications (PTMs) on a single protein by standard peptide-based proteomics is challenging owing to <100% sequence coverage and the uncoupling effect of proteolysis on such variations >10-20 residues apart. Because top down MS measures the whole protein, combinations of all the variations affecting primary sequence can be detected as they occur in combination. The protein form generated by all types of variation is here termed the "proteotype", akin to a haplotype at the DNA level. Analysis of proteins from human primary leukocytes harvested from leukoreduction filters using a dual on-line/off-line top down MS strategy produced >600 unique intact masses, 133 of which were identified from 67 unique genes. Utilizing a two-dimensional platform, termed multidimensional protein characterization by automated top down (MudCAT), 108 of the above protein forms were subsequently identified in the absence of MS/MS in 4 days. Additionally, MudCAT enables the quantitation of allele ratios for heterozygotes and PTM occupancies for phosphorylated species. The diversity of the human proteome is embodied in the fact that 32 of the identified proteins harbored cSNPs, PTMs, or were detected as proteolysis products. Among the information were three partially phosphorylated proteins and three proteins heterozygous at known cSNP loci, with evidence for non-1:1 expression ratios obtained for different alleles.


Asunto(s)
Leucocitos/química , Leucocitos/fisiología , Espectrometría de Masas/métodos , Proteómica/métodos , Calgranulina B/sangre , Calgranulina B/genética , Inhibidor de la Unión a Diazepam/sangre , Glucosa-6-Fosfato Isomerasa/sangre , Glucosa-6-Fosfato Isomerasa/genética , Glicoproteínas/sangre , Glicoproteínas/genética , Hemofiltración , Heterocigoto , Humanos , Leucocitos/metabolismo , Lisofosfolipasa/sangre , Lisofosfolipasa/genética , Fosforilación , Polimorfismo de Nucleótido Simple , Procesamiento Proteico-Postraduccional
19.
Biotechnol Prog ; 33(1): 163-170, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27813291

RESUMEN

Linkage of upstream cell culture with downstream processing and purification is an aspect of Quality by Design crucial for efficient and consistent production of high quality biopharmaceutical proteins. In a previous Plackett-Burman screening study of parallel bioreactor cultures we evaluated main effects of 11 process variables, such as agitation, sparge rate, feeding regimens, dissolved oxygen set point, inoculation density, supplement addition, temperature, and pH shifts. In this follow-up study, we observed linkages between cell culture process parameters and downstream capture chromatography performance and subsequent antibody attributes. In depth analysis of the capture chromatography purification of harvested cell culture fluid yielded significant effects of upstream process parameters on host cell protein abundance and behavior. A variety of methods were used to characterize the antibody both after purification and buffer formulation. This analysis provided insight in to the significant impacts of upstream process parameters on aggregate formation, impurities, and protein structure. This report highlights the utility of linkage studies in identifying how changes in upstream parameters can impact downstream critical quality attributes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:163-170, 2017.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Cromatografía/métodos , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/química , Biotecnología/métodos , Células CHO , Cricetulus , Concentración de Iones de Hidrógeno , Temperatura
20.
Biomed Res Int ; 2016: 2074149, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27042659

RESUMEN

Formulating appropriate storage conditions for biopharmaceutical proteins is essential for ensuring their stability and thereby their purity, potency, and safety over their shelf-life. Using a model murine IgG3 produced in a bioreactor system, multiple formulation compositions were systematically explored in a DoE design to optimize the stability of a challenging antibody formulation worst case. The stability of the antibody in each buffer formulation was assessed by UV/VIS absorbance at 280 nm and 410 nm and size exclusion high performance liquid chromatography (SEC) to determine overall solubility, opalescence, and aggregate formation, respectively. Upon preliminary testing, acetate was eliminated as a potential storage buffer due to significant visible precipitate formation. An additional 2(4) full factorial DoE was performed that combined the stabilizing effect of arginine with the buffering capacity of histidine. From this final DoE, an optimized formulation of 200 mM arginine, 50 mM histidine, and 100 mM NaCl at a pH of 6.5 was identified to substantially improve stability under long-term storage conditions and after multiple freeze/thaw cycles. Thus, our data highlights the power of DoE based formulation screening approaches even for challenging monoclonal antibody molecules.


Asunto(s)
Anticuerpos Monoclonales/química , Formación de Anticuerpos , Inmunoglobulina G/química , Animales , Anticuerpos Monoclonales/inmunología , Tampones (Química) , Cromatografía Líquida de Alta Presión , Congelación , Concentración de Iones de Hidrógeno , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Ratones , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA