Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(4): e1010698, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37083675

RESUMEN

Multicellularity has evolved several independent times over the past hundreds of millions of years and given rise to a wide diversity of complex life. Recent studies have found that large differences in the fundamental structure of early multicellular life cycles can affect fitness and influence multicellular adaptation. Yet, there is an underlying assumption that at some scale or categorization multicellular life cycles are similar in terms of their adaptive potential. Here, we consider this possibility by exploring adaptation in a class of simple multicellular life cycles of filamentous organisms that only differ in one respect, how many daughter filaments are produced. We use mathematical models and evolutionary simulations to show that despite the similarities, qualitatively different mutations fix. In particular, we find that mutations with a tradeoff between cell growth and group survival, i.e. "selfish" or "altruistic" traits, spread differently. Specifically, altruistic mutations more readily spread in life cycles that produce few daughters while in life cycles producing many daughters either type of mutation can spread depending on the environment. Our results show that subtle changes in multicellular life cycles can fundamentally alter adaptation.


Asunto(s)
Estadios del Ciclo de Vida , Modelos Teóricos , Animales , Evolución Biológica , Aclimatación , Fenotipo
2.
New Phytol ; 231(6): 2125-2141, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34131932

RESUMEN

Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.


Asunto(s)
Ecosistema , Plantas , Cambio Climático , Hojas de la Planta , Fenómenos Fisiológicos de las Plantas
3.
PLoS Comput Biol ; 16(1): e1007483, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914166

RESUMEN

Spatially extended ecological public goods, such as forests, grasslands, and fish stocks, are at risk of being overexploited by selfish consumers-a phenomenon widely recognized as the 'tragedy of the commons.' The interplay of spatial and ecological dimensions introduces new features absent in non-spatial ecological contexts, such as consumer mobility, local information availability, and strategy evolution through social learning in neighborhoods. It is unclear how these features interact to influence the harvesting and dispersal strategies of consumers. To answer these questions, we develop and analyze an individual-based, spatially structured, eco-evolutionary model with explicit resource dynamics. We report the following findings. (1) When harvesting efficiency is low, consumers evolve a sedentary consumption strategy, through which the resource is harvested sustainably, but with harvesting rates far below their maximum sustainable value. (2) As harvesting efficiency increases, consumers adopt a mobile 'consume-and-disperse' strategy, which is sustainable, equitable, and gives maximum sustainable yield. (3) A further increase in harvesting efficiency leads to large-scale overexploitation. (4) If costs of dispersal are significant, increased harvesting efficiency also leads to social inequality between frugal sedentary consumers and overexploitative mobile consumers. Whereas overexploitation can occur without social inequality, social inequality always leads to overexploitation. Thus, we identify four conditions that-while being characteristic of technological progress in modern societies-risk social inequality and overexploitation: high harvesting efficiency, moderately low costs of dispersal, high consumer density, and the tendency of consumers to adopt new strategies rapidly. We also show how access to global information-another feature widespread in modern societies-helps mitigate these risks.


Asunto(s)
Ciencias Bioconductuales , Comportamiento del Consumidor , Ecología , Factores Socioeconómicos , Biología Computacional , Humanos
4.
J Theor Biol ; 506: 110374, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32634386

RESUMEN

It is well recognized that spatial heterogeneity and overall productivity have important consequences for the diversity and community structure of food webs. Yet, few, if any, studies have considered the effects of heterogeneous spatial distributions of primary production. Here, we theoretically investigate how the variance and autocorrelation length of primary production affect properties of evolved food webs consisting of one autotroph and several heterotrophs. We report the following findings. (1) Diversity increases with landscape variance and is unimodal in autocorrelation length. (2) Trophic level increases with landscape variance and is unimodal in autocorrelation length. (3) The extent to which the spatial distribution of heterotrophs differ from that of the autotroph increases with landscape variance and decreases with autocorrelation length. (4) Components of initial disruptive selection experienced by the ancestral heterotroph predict properties of the final evolved communities. Prior to our study reported here, several authors had hypothesized that diversity increases with the landscape variance of productivity. Our results support their hypothesis and contribute new facets by providing quantitative predictions that also account for autocorrelation length and additional properties of the evolved communities.


Asunto(s)
Ecosistema , Cadena Alimentaria
5.
Nat Rev Genet ; 15(3): 176-92, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24535286

RESUMEN

Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.


Asunto(s)
Genómica , Biodiversidad , Modelos Genéticos
6.
Proc Natl Acad Sci U S A ; 114(13): E2719-E2728, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28283658

RESUMEN

To explain diversity in forests, niche theory must show how multiple plant species coexist while competing for the same resources. Although successional processes are widespread in forests, theoretical work has suggested that differentiation in successional strategy allows only a few species stably to coexist, including only a single shade tolerant. However, this conclusion is based on current niche models, which encode a very simplified view of plant communities, suggesting that the potential for niche differentiation has remained unexplored. Here, we show how extending successional niche models to include features common to all vegetation-height-structured competition for light under a prevailing disturbance regime and two trait-mediated tradeoffs in plant function-enhances the diversity of species that can be maintained, including a diversity of shade tolerants. We identify two distinct axes of potential niche differentiation, corresponding to the traits leaf mass per unit leaf area and height at maturation. The first axis allows for coexistence of different shade tolerances and the second axis for coexistence among species with the same shade tolerance. Addition of this second axis leads to communities with a high diversity of shade tolerants. Niche differentiation along the second axis also generates regions of trait space wherein fitness is almost equalized, an outcome we term "evolutionarily emergent near-neutrality." For different environmental conditions, our model predicts diverse vegetation types and trait mixtures, akin to observations. These results indicate that the outcomes of successional niche differentiation are richer than previously thought and potentially account for mixtures of traits and species observed in forests worldwide.


Asunto(s)
Biodiversidad , Bosques , Modelos Teóricos , Dinámica Poblacional
7.
Ecol Lett ; 22(11): 1746-1756, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31389134

RESUMEN

Spatial environmental heterogeneity coupled with dispersal can promote ecological persistence of diverse metacommunities. Does this premise hold when metacommunities evolve? Using a two-resource competition model, we studied the evolution of resource-uptake specialisation as a function of resource type (substitutable to essential) and shape of the trade-off between resource uptake affinities (generalist- to specialist-favouring). In spatially homogeneous environments, evolutionarily stable coexistence of consumers is only possible for sufficiently substitutable resources and specialist-favouring trade-offs. Remarkably, these same conditions yield comparatively low diversity in heterogeneous environments, because they promote sympatric evolution of two opposite resource specialists that, together, monopolise the two resources everywhere. Consumer diversity is instead maximised for intermediate trade-offs and clearly substitutable or clearly essential resources, where evolved metacommunities are characterised by contrasting selection regimes. Taken together, our results present new insights into resource-competition-mediated evolutionarily stable diversity in homogeneous and heterogeneous environments, which should be applicable to a wide range of systems.


Asunto(s)
Evolución Biológica , Ecosistema , Ecología , Modelos Biológicos , Dinámica Poblacional , Especialización
8.
Am Nat ; 193(3): 373-390, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30794450

RESUMEN

Sustainable yields that are at least 80% of the maximum sustainable yield are sometimes referred to as "pretty good yields" (PGY). The range of PGY harvesting strategies is generally broad and thus leaves room to account for additional objectives besides high yield. Here, we analyze stage-dependent harvesting strategies that realize PGY with conservation as a second objective. We show that (1) PGY harvesting strategies can give large conservation benefits and (2) equal harvesting rates of juveniles and adults is often a good strategy. These conclusions are based on trade-off curves between yield and four measures of conservation that form in two established population models, one age-structured model and one stage-structured model, when considering different harvesting rates of juveniles and adults. These conclusions hold for a broad range of parameter settings, although our investigation of robustness also reveals that (3) predictions of the age-structured model are more sensitive to variations in parameter values than those of the stage-structured model. Finally, we find that (4) measures of stability that are often quite difficult to assess in the field (e.g., basic reproduction ratio and resilience) are systematically negatively correlated with impacts on biomass and size structure, so that these later quantities can provide integrative signals to detect possible collapses.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Modelos Teóricos , Factores de Edad , Biomasa
9.
Proc Biol Sci ; 286(1895): 20181949, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30963948

RESUMEN

Dispersal is a key process for the emergence of social and biological behaviours. Yet, little attention has been paid to dispersal's effects on the evolution of cooperative behaviour in structured populations. To address this issue, we propose two new dispersal modes, parent-preferred and offspring-preferred dispersal, incorporate them into the birth-death update rule, and consider the resultant strategy evolution in the prisoner's dilemma on random-regular, small-world, and scale-free networks, respectively. We find that parent-preferred dispersal favours the evolution of cooperation in these different types of population structures, while offspring-preferred dispersal inhibits the evolution of cooperation in homogeneous populations. On scale-free networks when the strength of parent-preferred dispersal is weak, cooperation can be enhanced at intermediate strengths of offspring-preferred dispersal, and cooperators can coexist with defectors at high strengths of offspring-preferred dispersal. Moreover, our theoretical analysis based on the pair-approximation method corroborates the evolutionary outcomes on random-regular networks. We also incorporate the two new dispersal modes into three other update rules (death-birth, imitation, and pairwise comparison updating), and find that similar results about the effects of parent-preferred and offspring-preferred dispersal can again be observed in the aforementioned different types of population structures. Our work, thus, unveils robust effects of preferential dispersal modes on the evolution of cooperation in different interactive environments.


Asunto(s)
Distribución Animal , Conducta Cooperativa , Animales , Teoría del Juego , Modelos Biológicos , Padres , Dinámica Poblacional , Dilema del Prisionero
10.
Environ Res ; 172: 693-699, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30884421

RESUMEN

BACKGROUND: Climate change allows Aedes aegypti to infest new areas. Consequently, it enables the arboviruses the mosquito transmits -- e.g., dengue, chikungunya, Zika and yellow fever - to emerge in previously uninfected areas. An example is the Portuguese island of Madeira during 2012-13. OBJECTIVE: We aim to understand how climate change will affect the future spread of this potent vector, as an aid in assessing the risk of disease outbreaks and effectively allocating resources for vector control. METHODS: We used an empirically-informed, process-based mathematical model to study the feasibility of Aedes aegypti infestation into continental Europe. Based on established global climate-change scenario data, we assess the potential of Aedes aegypti to establish in Europe over the 21st century by estimating the vector population growth rate for five climate models (GCM5). RESULTS: In a low carbon emission future (RCP2.6), we find minimal change to the current situation throughout the whole of the 21st century. In a high carbon future (RCP8.5), a large parts of southern Europe risks being invaded by Aedes aegypti. CONCLUSION: Our results show that successfully enforcing the Paris Agreement by limiting global warming to below 2 °C significantly lowers the risk for infestation of Aedes aegypti and consequently of potential large-scale arboviral disease outbreaks in Europe within the 21st century.


Asunto(s)
Aedes , Cambio Climático , Mosquitos Vectores , Aedes/fisiología , Aedes/virología , Animales , Ciudades , Europa (Continente)/epidemiología , Modelos Teóricos , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , Virosis/epidemiología , Virosis/transmisión
11.
Am Nat ; 192(1): E37-E47, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29897799

RESUMEN

Branch formation in trees has an inherent tendency toward exponential growth, but exponential growth in the number of branches cannot continue indefinitely. It has been suggested that trees balance this tendency toward expansion by also losing branches grown in previous growth cycles. Here, we present a model for branch formation and branch loss during ontogeny that builds on the phenomenological assumption of a branch carrying capacity. The model allows us to derive approximate analytical expressions for the number of tips on a branch, the distribution of growth modules within a branch, and the rate and size distribution of tree wood litter produced. Although limited availability of data makes empirical corroboration challenging, we show that our model can fit field observations of red maple (Acer rubrum) and note that the age distribution of discarded branches predicted by our model is qualitatively similar to an empirically observed distribution of dead and abscised branches of balsam poplar (Populus balsamifera). By showing how a simple phenomenological assumption-that the number of branches a tree can maintain is limited-leads directly to predictions on branching structure and the rate and size distribution of branch loss, these results potentially enable more explicit modeling of woody tissues in ecosystems worldwide, with implications for the buildup of flammable fuel, nutrient cycling, and understanding of plant growth.


Asunto(s)
Modelos Biológicos , Árboles/crecimiento & desarrollo , Acer , Populus , Madera
12.
J Theor Biol ; 443: 56-65, 2018 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-29337264

RESUMEN

Cooperation is ubiquitous in biological and social systems, even though cooperative behavior is often costly and at risk of exploitation by non-cooperators. Several studies have demonstrated that indirect reciprocity, whereby some members of a group observe the behaviors of their peers and use this information to discriminate against previously uncooperative agents in the future, can promote prosocial behavior. Some studies have shown that differential propensities of interacting among and between different types of agents (interaction assortment) can increase the effectiveness of indirect reciprocity. No previous studies have, however, considered differential propensities of observing the behaviors of different types of agents (information assortment). Furthermore, most previous studies have assumed that discriminators possess perfect information about others and incur no costs for gathering and storing this information. Here, we (1) consider both interaction assortment and information assortment, (2) assume discriminators have limited information about others, and (3) introduce a cost for information gathering and storage, in order to understand how the ability of discriminators to stabilize cooperation is affected by these steps toward increased realism. We report the following findings. First, cooperation can persist when agents preferentially interact with agents of other types or when discriminators preferentially observe other discriminators, even when they have limited information. Second, contrary to intuition, increasing the amount of information available to discriminators can exacerbate defection. Third, introducing costs of gathering and storing information makes it more difficult for discriminators to stabilize cooperation. Our study is one of only a few studies to date that show how negative interaction assortment can promote cooperation and broadens the set of circumstances in which it is know that cooperation can be maintained.


Asunto(s)
Ciencias Bioconductuales , Conducta Cooperativa , Modelos Biológicos , Humanos
13.
Am Nat ; 189(4): 381-395, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28350499

RESUMEN

Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.


Asunto(s)
Genética de Población , Fenotipo , Evolución Biológica , Modelos Teóricos , Selección Genética
14.
New Phytol ; 209(4): 1591-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26548947

RESUMEN

Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory.


Asunto(s)
Cambio Climático , Fenómenos Fisiológicos de las Plantas , Flores/fisiología , Modelos Teóricos , Hojas de la Planta/fisiología , Estaciones del Año , Factores de Tiempo
15.
Bull Math Biol ; 78(8): 1749-72, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27647007

RESUMEN

Species that compete for access to or use of sites, such as parasitic mites attaching to honey bees or apple maggots laying eggs in fruits, can potentially increase their fitness by carefully selecting sites at which they face little or no competition. Here, we systematically investigate the evolution of site-selection strategies among animals competing for discrete sites. By developing and analyzing a mechanistic and population-dynamical model of site selection in which searching individuals encounter sites sequentially and can choose to accept or continue to search based on how many conspecifics are already there, we give a complete characterization of the different site-selection strategies that can evolve. We find that evolution of site-selection stabilizes population dynamics, promotes even distribution of individuals among sites, and occasionally causes evolutionary suicide. We also discuss the broader implications of our findings and propose how they can be reconciled with an earlier study (Nonaka et al. in J Theor Biol 317:96-104, 2013) that reported selection toward ever higher levels of aggregation among sites as a consequence of site-selection.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Animales , Ecosistema , Extinción Biológica , Aptitud Genética , Conceptos Matemáticos , Modelos Genéticos , Dinámica Poblacional , Selección Genética
16.
Am Nat ; 186(5): E126-43, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26655782

RESUMEN

Phenotypic plasticity is the ability of one genotype to produce different phenotypes depending on environmental conditions. Several conceptual models emphasize the role of plasticity in promoting reproductive isolation and, ultimately, speciation in populations that forage on two or more resources. These models predict that plasticity plays a critical role in the early stages of speciation, prior to genetic divergence, by facilitating fast phenotypic divergence. The ability to plastically express alternative phenotypes may, however, interfere with the early phase of the formation of reproductive barriers, especially in the absence of geographic barriers. Here, we quantitatively investigate mechanisms under which plasticity can influence progress toward adaptive genetic diversification and ecological speciation. We use a stochastic, individual-based model of a predator-prey system incorporating sexual reproduction and mate choice in the predator. Our results show that evolving plasticity promotes the evolution of reproductive isolation under diversifying environments when individuals are able to correctly select a more profitable habitat with respect to their phenotypes (i.e., adaptive habitat choice) and to assortatively mate with relatively similar phenotypes. On the other hand, plasticity facilitates the evolution of plastic generalists when individuals have a limited capacity for adaptive habitat choice. We conclude that plasticity can accelerate the evolution of a reproductive barrier toward adaptive diversification and ecological speciation through enhanced phenotypic differentiation between diverging phenotypes.


Asunto(s)
Evolución Biológica , Especiación Genética , Fenotipo , Aislamiento Reproductivo , Animales , Ecosistema , Modelos Genéticos
17.
Proc Biol Sci ; 282(1801): 20142121, 2015 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-25589602

RESUMEN

We derive functional responses under the assumption that predators and prey are engaged in a space race in which prey avoid patches with many predators and predators avoid patches with few or no prey. The resulting functional response models have a simple structure and include functions describing how the emigration of prey and predators depend on interspecific densities. As such, they provide a link between dispersal behaviours and community dynamics. The derived functional response is general but is here modelled in accordance with empirically documented emigration responses. We find that the prey emigration response to predators has stabilizing effects similar to that of the DeAngelis-Beddington functional response, and that the predator emigration response to prey has destabilizing effects similar to that of the Holling type II response. A stability criterion describing the net effect of the two emigration responses on a Lotka-Volterra predator-prey system is presented. The winner of the space race (i.e. whether predators or prey are favoured) is determined by the relationship between the slopes of the species' emigration responses. It is predicted that predators win the space race in poor habitats, where predator and prey densities are low, and that prey are more successful in richer habitats.


Asunto(s)
Migración Animal , Cadena Alimentaria , Conducta Predatoria , Animales , Ecosistema , Modelos Biológicos , Densidad de Población
18.
J Theor Biol ; 380: 280-90, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26025318

RESUMEN

We investigate how four types of interference competition - which alternatively affect foraging, metabolism, survival, and reproduction - impact the ecology and evolution of size-structured populations. Even though all four types of interference competition reduce population biomass, interference competition at intermediate intensity sometimes significantly increases the abundance of adult individuals and the population׳s reproduction rate. We find that foraging and metabolic interference evolutionarily favor smaller maturation size when interference is weak and larger maturation size when interference is strong. The evolutionary response to survival interference and reproductive interference is always larger maturation size. We also investigate how the four types of interference competition impact the evolutionary dynamics and resultant diversity and trophic structure of size-structured communities. Like other types of trait-mediated competition, all four types of interference competition can induce disruptive selection and thus promote initial diversification. Even though foraging interference and reproductive interference are more potent in promoting initial diversification, they catalyze the formation of diverse communities with complex trophic structure only at high levels of interference intensity. By contrast, survival interference does so already at intermediate levels, while reproductive interference can only support relatively smaller communities with simpler trophic structure. Taken together, our results show how the type and intensity of interference competition jointly affect coexistence patterns in structured population models.


Asunto(s)
Evolución Biológica , Conducta Competitiva , Ecología , Modelos Teóricos , Algoritmos , Biodiversidad
19.
Proc Natl Acad Sci U S A ; 109(4): 1165-9, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22232694

RESUMEN

Self-interest frequently causes individuals engaged in joint enterprises to choose actions that are counterproductive. Free-riders can invade a society of cooperators, causing a tragedy of the commons. Such social dilemmas can be overcome by positive or negative incentives. Even though an incentive-providing institution may protect a cooperative society from invasion by free-riders, it cannot always convert a society of free-riders to cooperation. In the latter case, both norms, cooperation and defection, are stable: To avoid a collapse to full defection, cooperators must be sufficiently numerous initially. A society of free-riders is then caught in a social trap, and the institution is unable to provide an escape, except at a high, possibly prohibitive cost. Here, we analyze the interplay of (a) incentives provided by institutions and (b) the effects of voluntary participation. We show that this combination fundamentally improves the efficiency of incentives. In particular, optional participation allows institutions punishing free-riders to overcome the social dilemma at a much lower cost, and to promote a globally stable regime of cooperation. This removes the social trap and implies that whenever a society of cooperators cannot be invaded by free-riders, it will necessarily become established in the long run, through social learning, irrespective of the initial number of cooperators. We also demonstrate that punishing provides a "lighter touch" than rewarding, guaranteeing full cooperation at considerably lower cost.


Asunto(s)
Evolución Biológica , Conducta Cooperativa , Teoría del Juego , Procesos de Grupo , Modelos Psicológicos , Motivación , Juegos Experimentales , Humanos , Castigo/psicología , Recompensa
20.
Commun Biol ; 7(1): 38, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238502

RESUMEN

Cope's rule posits that evolution gradually increases the body size in lineages. Over the last decades, two schools of thought have fueled a debate on the applicability of Cope's rule by reporting empirical evidence, respectively, for and against Cope's rule. The apparent contradictions thus documented highlight the need for a comprehensive process-based synthesis through which both positions of this debate can be understood and reconciled. Here, we use a process-based community-evolution model to investigate the eco-evolutionary emergence of Cope's rule. We report three characteristic macroevolutionary patterns, of which only two are consistent with Cope's rule. First, we find that Cope's rule applies when species interactions solely depend on relative differences in body size and the risk of lineage extinction is low. Second, in environments with higher risk of lineage extinction, the recurrent evolutionary elimination of top predators induces cyclic evolution toward larger body sizes, according to a macroevolutionary pattern we call the recurrent Cope's rule. Third, when interactions between species are determined not only by their body sizes but also by their ecological niches, the recurrent Cope's rule may get inverted, leading to cyclic evolution toward smaller body sizes. This recurrent inverse Cope's rule is characterized by highly dynamic community evolution, involving the diversification of species with large body sizes and the extinction of species with small body sizes. To our knowledge, these results provide the first theoretical foundation for reconciling the contrasting empirical evidence reported on body-size evolution.


Asunto(s)
Filogenia , Tamaño Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA