Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(3): 471-482, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429458

RESUMEN

Persistent symptoms following SARS-CoV-2 infection are increasingly reported, although the drivers of post-acute sequelae (PASC) of COVID-19 are unclear. Here we assessed 214 individuals infected with SARS-CoV-2, with varying disease severity, for one year from COVID-19 symptom onset to determine the early correlates of PASC. A multivariate signature detected beyond two weeks of disease, encompassing unresolving inflammation, anemia, low serum iron, altered iron-homeostasis gene expression and emerging stress erythropoiesis; differentiated those who reported PASC months later, irrespective of COVID-19 severity. A whole-blood heme-metabolism signature, enriched in hospitalized patients at month 1-3 post onset, coincided with pronounced iron-deficient reticulocytosis. Lymphopenia and low numbers of dendritic cells persisted in those with PASC, and single-cell analysis reported iron maldistribution, suggesting monocyte iron loading and increased iron demand in proliferating lymphocytes. Thus, defects in iron homeostasis, dysregulated erythropoiesis and immune dysfunction due to COVID-19 possibly contribute to inefficient oxygen transport, inflammatory disequilibrium and persisting symptomatology, and may be therapeutically tractable.


Asunto(s)
COVID-19 , Hierro , Humanos , Eritropoyesis , SARS-CoV-2 , Investigadores , Progresión de la Enfermedad
2.
Nat Immunol ; 24(2): 349-358, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36717723

RESUMEN

The biology driving individual patient responses to severe acute respiratory syndrome coronavirus 2 infection remains ill understood. Here, we developed a patient-centric framework leveraging detailed longitudinal phenotyping data and covering a year after disease onset, from 215 infected individuals with differing disease severities. Our analyses revealed distinct 'systemic recovery' profiles, with specific progression and resolution of the inflammatory, immune cell, metabolic and clinical responses. In particular, we found a strong inter-patient and intra-patient temporal covariation of innate immune cell numbers, kynurenine metabolites and lipid metabolites, which highlighted candidate immunologic and metabolic pathways influencing the restoration of homeostasis, the risk of death and that of long COVID. Based on these data, we identified a composite signature predictive of systemic recovery, using a joint model on cellular and molecular parameters measured soon after disease onset. New predictions can be generated using the online tool http://shiny.mrc-bsu.cam.ac.uk/apps/covid-19-systemic-recovery-prediction-app , designed to test our findings prospectively.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Quinurenina , Atención Dirigida al Paciente
3.
Cell ; 167(5): 1415-1429.e19, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863252

RESUMEN

Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.


Asunto(s)
Variación Genética , Estudio de Asociación del Genoma Completo , Células Madre Hematopoyéticas/metabolismo , Enfermedades del Sistema Inmune/genética , Alelos , Diferenciación Celular , Predisposición Genética a la Enfermedad , Células Madre Hematopoyéticas/patología , Humanos , Enfermedades del Sistema Inmune/patología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Población Blanca/genética
4.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34051148

RESUMEN

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/virología , Interacciones Huésped-Patógeno/inmunología , Activación de Linfocitos/inmunología , SARS-CoV-2/inmunología , Biomarcadores , Linfocitos T CD8-positivos/metabolismo , COVID-19/diagnóstico , COVID-19/genética , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Estudios Longitudinales , Activación de Linfocitos/genética , Fosforilación Oxidativa , Fenotipo , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Índice de Severidad de la Enfermedad , Transcriptoma
5.
Nature ; 596(7872): 417-422, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34192737

RESUMEN

Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating.


Asunto(s)
Envejecimiento/inmunología , Vacunas contra la COVID-19/inmunología , Inmunidad , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/sangre , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Autoanticuerpos/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Vacuna BNT162 , Vacunas contra la COVID-19/administración & dosificación , Femenino , Personal de Salud , Humanos , Inmunidad/genética , Inmunización Secundaria , Inmunoglobulina A/inmunología , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Memoria Inmunológica/inmunología , Inflamación/sangre , Inflamación/inmunología , Interferón gamma/inmunología , Interleucina-2/inmunología , Masculino , Persona de Mediana Edad , Hipermutación Somática de Inmunoglobulina , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Vacunación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas de ARNm
6.
Nature ; 592(7853): 277-282, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545711

RESUMEN

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/terapia , COVID-19/virología , Evolución Molecular , Mutagénesis/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Anciano , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Enfermedad Crónica , Genoma Viral/efectos de los fármacos , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Evasión Inmune/efectos de los fármacos , Evasión Inmune/genética , Evasión Inmune/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Inmunización Pasiva , Terapia de Inmunosupresión , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/inmunología , Mutación , Filogenia , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo , Carga Viral/efectos de los fármacos , Esparcimiento de Virus , Sueroterapia para COVID-19
7.
Nature ; 593(7857): 136-141, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33706364

RESUMEN

Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant1, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b22. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/terapia , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/inmunología , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , COVID-19/metabolismo , COVID-19/virología , Femenino , Células HEK293 , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Inmunización Pasiva , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunas Sintéticas/administración & dosificación , Sueroterapia para COVID-19 , Vacunas de ARNm
8.
Am J Pathol ; 194(7): 1374-1387, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537932

RESUMEN

Clear-cell renal cell carcinoma (ccRCC), a tubular epithelial malignancy, secretes tumor necrosis factor (TNF), which signals ccRCC cells in an autocrine manner via two cell surface receptors, TNFR1 and TNFR2, to activate shared and distinct signaling pathways. Selective ligation of TNFR2 drives cell cycle entry of malignant cells via a signaling pathway involving epithelial tyrosine kinase, vascular endothelial cell growth factor receptor type 2, phosphatidylinositol-3-kinase, Akt, pSer727-Stat3, and mammalian target of rapamycin. In this study, phosphorylated 4E binding protein-1 (4EBP1) serine 65 (pSer65-4EBP1) was identified as a downstream target of this TNFR2 signaling pathway. pSer65-4EBP1 expression was significantly elevated relative to total 4EBP1 in ccRCC tissue compared with that in normal kidneys, with signal intensity increasing with malignant grade. Selective ligation of TNFR2 with the TNFR2-specific mutein increased pSer65-4EBP1 expression in organ cultures that co-localized with internalized TNFR2 in mitochondria and increased expression of mitochondrially encoded COX (cytochrome c oxidase subunit) Cox1, as well as nuclear-encoded Cox4/5b subunits. Pharmacologic inhibition of mammalian target of rapamycin reduced both TNFR2-specific mutein-mediated phosphorylation of 4EBP1 and cell cycle activation in tumor cells while increasing cell death. These results signify the importance of pSer65-4EBP1 in mediating TNFR2-driven cell-cycle entry in tumor cells in ccRCC and implicate a novel relationship between the TNFR2/pSer65-4EBP1/COX axis and mitochondrial function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinoma de Células Renales , Proteínas de Ciclo Celular , Proliferación Celular , Neoplasias Renales , Mitocondrias , Receptores Tipo II del Factor de Necrosis Tumoral , Transducción de Señal , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Mitocondrias/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Biosíntesis de Proteínas , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética
9.
Nature ; 558(7708): 73-79, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875488

RESUMEN

Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.


Asunto(s)
Proteínas Sanguíneas/genética , Genómica , Proteoma/genética , Femenino , Factor de Crecimiento de Hepatocito/genética , Humanos , Enfermedades Inflamatorias del Intestino/genética , Masculino , Mutación Missense/genética , Mieloblastina/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Proteínas Proto-Oncogénicas/genética , Sitios de Carácter Cuantitativo/genética , Vasculitis/genética , alfa 1-Antitripsina/genética
10.
Am J Pathol ; 192(4): 722-736, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35063404

RESUMEN

Similar to the behavior of inflamed tubular epithelial cells, clear cell renal cell carcinoma (ccRCC) cells express death receptor 3 (DR3 or TNFSFR25) in situ, and expression increases with tumor grade. Surprisingly, E-selectin, which can be induced in endothelial cells by DR3 signaling, is also expressed by ccRCC cells and increases with tumor grade. In ccRCC organ cultures, addition of tumor necrosis factor-like 1A (TL1A or TNFSF15), the ligand for DR3, activates NF-κB and mitogen-activated protein kinases, induces both DR3 and E-selectin expression in an NF-κB-dependent manner, and promotes cell cycle entry. DR3 immunoprecipitated from ccRCC tissue contains sialyl Lewis X moieties (the ligand recognized by E-selectin), proximity ligation assays reveal DR3, and E-selectin interacts on ccRCC cells. Similar to that with the addition of TL1A, the addition of soluble E-selectin to ccRCC organ cultures activates NF-κB and mitogen-activated protein kinases in ccRCC cells and increases both DR3 and E-selectin expression and cell-cycle entry. In contrast, normal renal tubular epithelium, which poorly expresses DR3, is minimally responsive to either of these ligands. These data suggest a functional role for autocrine/paracrine DR3/E-selectin interactions in ccRCC and its progression, revealing a potential new target for therapeutic intervention.


Asunto(s)
Carcinoma de Células Renales , Selectina E , Neoplasias Renales , Miembro 25 de Receptores de Factores de Necrosis Tumoral , Antígenos CD , Carcinoma de Células Renales/metabolismo , Selectina E/genética , Selectina E/metabolismo , Células Endoteliales/metabolismo , Femenino , Humanos , Neoplasias Renales/metabolismo , Ligandos , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Miembro 25 de Receptores de Factores de Necrosis Tumoral/genética , Miembro 25 de Receptores de Factores de Necrosis Tumoral/metabolismo , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
11.
Brain ; 145(11): 4097-4107, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36065116

RESUMEN

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Gripe Humana , Humanos , Proteínas de Neurofilamentos , COVID-19/complicaciones , Biomarcadores , Autoanticuerpos , Inmunidad
14.
Int J Eat Disord ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37584261

RESUMEN

OBJECTIVE: The United Kingdom Eating Disorders Genetics Initiative (EDGI UK), part of the National Institute for Health and Care Research (NIHR) Mental Health BioResource, aims to deepen our understanding of the environmental and genetic etiology of eating disorders. EDGI UK launched in February 2020 and is partnered with the UK eating disorders charity, Beat. Multiple EDGI branches exist worldwide. This article serves the dual function of providing an in-depth description of our study protocol and of describing our initial sample including demographics, diagnoses, and physical and psychiatric comorbidities. METHOD: EDGI UK recruits via media and clinical services. Anyone living in England, at least 16 years old, with a lifetime probable or clinical eating disorder is eligible to sign up online: edgiuk.org. Participants complete online questionnaires, donate a saliva sample for genetic analysis, and consent to medical record linkage and recontact for future studies. RESULTS: As of September 2022, EDGI UK recruited 7435 survey participants: 98% female, 93.1% white, 97.8% cisgender, 65.9% heterosexual, and 52.1% have a university degree. Over half (57.8%) of these participants have returned their saliva DNA kit. The most common diagnoses are anorexia nervosa (48.3%), purging disorder (37.8%), bulimia nervosa (37.5%), binge-eating disorder (15.8%), and atypical anorexia nervosa (7.8%). CONCLUSION: EDGI UK is the largest UK eating disorders study and efforts to increase its diversity are underway. It offers a unique opportunity to accelerate eating disorder research. Researchers and participants with lived experience can collaborate on projects with unparalleled sample size. PUBLIC SIGNIFICANCE STATEMENT: Eating disorders are debilitating and costly for society but are under-researched due to underfunding. EDGI UK is one of the largest eating disorder studies worldwide with ongoing recruitment. The collected data constitute a resource for secondary analysis. We will combine data from all international EDGI branches and the NIHR BioResource to facilitate research that improves our understanding of eating disorders and their comorbidities.

15.
Am J Transplant ; 20(9): 2380-2391, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32167668

RESUMEN

Tumor necrosis factor receptor 2 (TNFR2) is strongly upregulated on renal tubular epithelial cells by acute cell-mediated rejection (ACR. In human kidney organ culture, TNFR2 signaling both upregulates TNFR2 expression and promotes cell cycle entry of tubular epithelial cells. We find significantly more cells express CD133 mRNA and protein, a putative stem cell marker, in allograft biopsy samples with ACR compared to acute tubular injury without rejection or pretransplant "normal kidney" biopsy samples. Of CD133+ cells, ~85% are within injured tubules and ~15% are interstitial. Both populations express stem cell marker TRA-1-60 and TNFR2, but only tubular CD133+ cells express proximal tubular markers megalin and aquaporin-1. TNFR2+ CD133+ cells in tubules express proliferation marker phospho-histone H3S10 (pH3S10 ). Tubular epithelial cells in normal kidney organ cultures respond to TNFR2 signaling by expressing CD133 mRNA and protein, stem cell marker TRA-1-60, and pH3S10 within 3 hours of treatment. This rapid response time suggests that CD133+ cells in regenerating tubules of kidneys undergoing ACR represent proliferating tubular epithelial cells with TNFR2-induced stem cell markers rather than expansion of resident stem cells. Infiltrating host mononuclear cells are a likely source of TNF as these changes are absent in acute tubular injury .


Asunto(s)
Trasplante de Riñón , Neoplasias , Aloinjertos , Células Epiteliales , Rechazo de Injerto/etiología , Humanos , Riñón , Túbulos Renales , Necrosis , Células Madre
16.
J Appl Res Intellect Disabil ; 32(6): 1412-1420, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31218787

RESUMEN

OBJECTIVES: To understand the views of qualified medical practitioners regarding "reasonable adjustments" and the quality of the care and treatment provided to adults with intellectual disabilities when admitted to acute hospitals as inpatients. METHODS: Semi-structured interviews took place with 14 medical practitioners, seven from each of two acute hospitals, with a thematic analysis of the resulting data. RESULTS: All 14 medical practitioners reported problems in the diagnosis and treatment of patients with intellectual disabilities. Most participants attributed these difficulties to communication problems and/or behaviours that, in the context of a hospital ward, were non-conforming. However, a minority reported that, because they were likely to have multiple comorbid health conditions, patients with intellectual disabilities were more complex. In addition, half of all these respondents reported making little use of "reasonable adjustments" introduced to improve the quality of the care received by this group of patients. CONCLUSIONS: Medical practitioners should make better use of the "reasonable adjustments" introduced in the UK to address inequities in care and treatment received by patients with intellectual disabilities. However, training should also focus on the biomedical complexities often presented by these men and women.


Asunto(s)
Comunicación , Personal de Salud , Hospitalización , Discapacidad Intelectual , Calidad de la Atención de Salud , Hospitales , Humanos , Problema de Conducta , Investigación Cualitativa , Reino Unido
17.
Blood ; 127(23): 2903-14, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-26912466

RESUMEN

Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MKs). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping, and similarity regression. We describe 2 unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was linked to reduced proplatelet formation from cultured MKs, cell clustering, and abnormal cortical filamentous actin. Similarly, in platelets, there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Overexpression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insight into the autoregulation of DIAPH1 activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Pérdida Auditiva/genética , Mutación , Trombocitopenia/genética , Células A549 , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Células Cultivadas , Niño , Femenino , Forminas , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Pérdida Auditiva/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Linaje , Polimorfismo de Nucleótido Simple , Síndrome , Trombocitopenia/complicaciones , Adulto Joven
18.
J Pathol ; 243(3): 390-400, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28815607

RESUMEN

Glomerular scarring, known as glomerulosclerosis, occurs in many chronic kidney diseases and involves interaction between glomerular endothelial cells (GECs), podocytes, and mesangial cells (MCs), leading to signals that promote extracellular matrix deposition and endothelial cell dysfunction and loss. We describe a 3D tri-culture system to model human glomerulosclerosis. In 3D monoculture, each cell type alters its phenotype in response to TGFß, which has been implicated as an important mediator of glomerulosclerosis. GECs form a lumenized vascular network, which regresses in response to TGFß. MCs respond to TGFß by forming glomerulosclerotic-like nodules with matrix deposition. TGFß treatment of podocytes does not alter cell morphology but increases connective tissue growth factor (CTGF) expression. BMP7 prevents TGFß-induced GEC network regression, whereas TGFß-induced MC nodule formation is prevented by SMAD3 siRNA knockdown or ALK5 inhibitors but not BMP7, and increased phospho-SMAD3 was observed in human glomerulosclerosis. In 3D tri-culture, GECs, podocytes, and MCs form a vascular network in which GECs and podocytes interact intimately within a matrix containing MCs. TGFß treatment induces formation of nodules, but combined inhibition of ALK5 and CTGF is required to prevent TGFß-induced nodule formation in tri-cellular cultures. Identification of therapeutic targets for glomerulosclerosis depends on the 3D culture of all three glomerular cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Glomérulos Renales/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Matriz Extracelular/metabolismo , Humanos , Enfermedades Renales/patología , Glomérulos Renales/metabolismo , Células Mesangiales/citología , Receptor Tipo I de Factor de Crecimiento Transformador beta
19.
Phys Chem Chem Phys ; 18(28): 19173-82, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27362505

RESUMEN

We detail the process of low-field thermal mixing (LFTM) between (1)H and (13)C nuclei in neat [1-(13)C] pyruvic acid at cryogenic temperatures (4-15 K). Using fast-field-cycling NMR, (1)H nuclei in the molecule were polarized at modest high field (2 T) and then equilibrated with (13)C nuclei by fast cycling (∼300-400 ms) to a low field (0-300 G) that activates thermal mixing. The (13)C NMR spectrum was recorded after fast cycling back to 2 T. The (13)C signal derives from (1)H polarization via LFTM, in which the polarized ('cold') proton bath contacts the unpolarised ('hot') (13)C bath at a field so low that Zeeman and dipolar interactions are similar-sized and fluctuations in the latter drive (1)H-(13)C equilibration. By varying mixing time (tmix) and field (Bmix), we determined field-dependent rates of polarization transfer (1/τ) and decay (1/T1m) during mixing. This defines conditions for effective mixing, as utilized in 'brute-force' hyperpolarization of low-γ nuclei like (13)C using Boltzmann polarization from nearby protons. For neat pyruvic acid, near-optimum mixing occurs for tmix∼ 100-300 ms and Bmix∼ 30-60 G. Three forms of frozen neat pyruvic acid were tested: two glassy samples, (one well-deoxygenated, the other O2-exposed) and one sample pre-treated by annealing (also well-deoxygenated). Both annealing and the presence of O2 are known to dramatically alter high-field longitudinal relaxation (T1) of (1)H and (13)C (up to 10(2)-10(3)-fold effects). Here, we found smaller, but still critical factors of ∼(2-5)× on both τ and T1m. Annealed, well-deoxygenated samples exhibit the longest time constants, e.g., τ∼ 30-70 ms and T1m∼ 1-20 s, each growing vs. Bmix. Mixing 'turns off' for Bmix > ∼100 G. That T1m≫τ is consistent with earlier success with polarization transfer from (1)H to (13)C by LFTM.

20.
Phys Chem Chem Phys ; 18(36): 25764, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27603570

RESUMEN

Correction for 'Low-field thermal mixing in [1-(13)C] pyruvic acid for brute-force hyperpolarization' by David T. Peat et al., Phys. Chem. Chem. Phys., 2016, 18, 19173-19182.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA