Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 14: 1107576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334365

RESUMEN

Human leukocyte antigen (HLA) molecules play a crucial role in directing adaptive immune responses based on the nature of their peptide ligands, collectively coined the immunopeptidome. As such, the study of HLA molecules has been of major interest in the development of cancer immunotherapies such as vaccines and T-cell therapies. Hence, a comprehensive understanding and profiling of the immunopeptidome is required to foster the growth of these personalised solutions. We herein describe SAPrIm, an Immunopeptidomics tool for the Mid-Throughput era. This is a semi-automated workflow involving the KingFisher platform to isolate immunopeptidomes using anti-HLA antibodies coupled to a hyper-porous magnetic protein A microbead, a variable window data independent acquisition (DIA) method and the ability to run up to 12 samples in parallel. Using this workflow, we were able to concordantly identify and quantify ~400 - 13000 unique peptides from 5e5 - 5e7 cells, respectively. Overall, we propose that the application of this workflow will be crucial for the future of immunopeptidome profiling, especially for mid-size cohorts and comparative immunopeptidomics studies.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Péptidos , Humanos , Antígenos HLA , Antígenos de Histocompatibilidad Clase II , Inmunoterapia
2.
Comput Struct Biotechnol J ; 19: 5735-5740, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745458

RESUMEN

Volcano and other analytical plots (e.g., correlation plots, upset plots, and heatmaps) serve as important data visualization methods for transcriptomic and proteomic analyses. Customizable generation of these plots is fundamentally important for a better understanding of dysregulated expression data and is therefore instrumental for the ensuing pathway analysis and biomarker identification. Here, we present an R-based Shiny application, termed ggVolcanoR, to allow for customizable generation and visualization of volcano plots, correlation plots, upset plots, and heatmaps for differential expression datasets, via a user-friendly interactive interface in both local executable version and web-based application without requiring programming expertise. Compared to currently existing packages, ggVolcanoR offers more practical options to optimize the generation of publication-quality volcano and other analytical plots for analyzing and comparing dysregulated genes/proteins across multiple differential expression datasets. In addition, ggVolcanoR provides an option to download the customized list of the filtered dysregulated expression data, which can be directly used as input for downstream pathway analysis. The source code of ggVolcanoR is available at https://github.com/KerryAM-R/ggVolcanoR and the webserver of ggVolcanoR 1.0 has been deployed and is freely available for academic purposes at https://ggvolcanor.erc.monash.edu/.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA