Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Mol Cell Cardiol ; 44(2): 293-303, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18182166

RESUMEN

Mutations in the lamin A/C (LMNA) gene, which encodes nuclear membrane proteins, cause a variety of human conditions including dilated cardiomyopathy (DCM) with associated cardiac conduction system disease. To investigate mechanisms responsible for electrophysiologic and myocardial phenotypes caused by dominant human LMNA mutations, we performed longitudinal evaluations in heterozygous Lmna(+/-) mice. Despite one normal allele, Lmna(+/-) mice had 50% of normal cardiac lamin A/C levels and developed cardiac abnormalities. Conduction system function was normal in neonatal Lmna(+/-) mice but, by 4 weeks of age, atrioventricular (AV) nodal myocytes had abnormally shaped nuclei and active apoptosis. Telemetric and in vivo electrophysiologic studies in 10-week-old Lmna(+/-) mice showed AV conduction defects and both atrial and ventricular arrhythmias, analogous to those observed in humans with heterozygous LMNA mutations. Isolated myocytes from 12-month-old Lmna(+/-) mice exhibited impaired contractility. In vivo cardiac studies of aged Lmna(+/-) mice revealed DCM; in some mice this occurred without overt conduction system disease. However, neither histopathology nor serum CK levels indicated skeletal muscle pathology. These data demonstrate cardiac pathology due to heterozygous Lmna mutations reflecting a 50% reduction in lamin protein levels. Lamin haploinsufficiency caused early-onset programmed cell death of AV nodal myocytes and progressive electrophysiologic disease. While lamin haploinsufficiency was better tolerated by non-conducting myocytes, ultimately, these too succumbed to diminished lamin levels leading to dilated cardiomyopathy, which presumably arose independently from conduction system disease.


Asunto(s)
Apoptosis , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Sistema de Conducción Cardíaco/patología , Lamina Tipo A/genética , Edad de Inicio , Animales , Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/enzimología , Nodo Atrioventricular/patología , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatía Dilatada/enzimología , Núcleo Celular/patología , Separación Celular , Electrofisiología , Sistema de Conducción Cardíaco/enzimología , Heterocigoto , Etiquetado Corte-Fin in Situ , Lamina Tipo A/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Enfermedades Musculares/patología , Miocardio/metabolismo , Miocardio/patología , Telemetría , Ultrasonografía
2.
J Interv Card Electrophysiol ; 20(1-2): 1-7, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17940855

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by mutations in the dystrophin gene. Cardiomyopathy, conduction abnormalities, and ventricular arrhythmias are significant complications of this disease. The mdx ( 5cv ) mouse carries a dystrophin mutation and demonstrates a more severe phenotype than the classic mdx mouse. METHODS: Comprehensive electrophysiological phenotyping was performed in adult mdx ( 5cv ) and wildtype mice, including electrocardiography (ECG), implantable Holter monitoring, intracardiac electrophysiological testing, echocardiography, and exercise treadmill testing. RESULTS: ECG performed in mdx ( 5cv ) mice revealed significantly shorter PR intervals and prominent R waves in surface lead V1. During electrophysiological testing, mdx ( 5cv ) mice exhibited longer ventricle effective refractory periods and mildly increased ventricular tachycardia inducibility. There was no evidence for cardiomyopathy or ventricular dysfunction on echocardiography. Histopathology showed no increased myocardial fibrosis. Exercise endurance was lower in mdx ( 5cv ) mice without arrhythmias or other cardiac abnormalities. CONCLUSION: Taken together at the age range examined, mdx ( 5cv ) mice exhibit discrete cardiac electrophysiological dysfunction but display no evidence of structural or contractile abnormalities. Thus, the mdx ( 5cv ) mouse recapitulates some of the electrophysiological, but not hemodynamic cardiac defects present in human DMD. In certain settings, the mdx ( 5cv ) mouse may be an appropriate subject for studying electrical pathophysiology and therapy of the cardiac complications of DMD.


Asunto(s)
Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/fisiopatología , Animales , Arritmias Cardíacas/diagnóstico , Electrocardiografía , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/diagnóstico
3.
Circulation ; 112(20): 3140-8, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16275868

RESUMEN

BACKGROUND: AMP-activated protein kinase (AMPK) regulatory gamma2 subunit (PRKAG2) mutations cause a human cardiomyopathy with cardiac hypertrophy, preexcitation, and glycogen deposition. PRKAG2 cardiomyopathy is recapitulated in transgenic mice overexpressing mutant PRKAG2 N488I in the heart (TGgamma2N488I). AMPK is a heterotrimeric kinase consisting of 1 catalytic (alpha) and 2 regulatory (beta and gamma) subunits. Two alpha-subunit isoforms, alpha1 and alpha2, are expressed in the heart; however, the contribution of AMPK utilization of these subunits to PRKAG2 cardiomyopathy is unknown. Mice overexpressing a dominant-negative alpha2 subunit of AMPK (TGalpha2DN) provide a tool for selectively inhibiting alpha2, but not alpha1, subunit-associated AMPK activity. METHODS AND RESULTS: In compound-heterozygous TGgamma2N488I/TGalpha2DN mice, AMPK activity associated with alpha2 but not alpha1 was decreased compared with TGgamma2N488I. The TGalpha2DN transgene reduced the disease phenotype of TGgamma2N488I, partially or completely normalizing the ECG, cardiac function, cardiac morphology, and exercise capacity in compound-heterozygous mice. TGgamma2N488I hearts had normal resting levels of high-energy phosphates and could improve cardiac performance during exercise. Cardiac glycogen content decreased in TGgamma2N488I mice after exercise stress, indicating availability of the stored glycogen for metabolic utilization. No differences in glycogen-metabolizing enzymes were observed. CONCLUSIONS: The PRKAG2 N488I mutation causes inappropriate AMPK activation, which leads to glycogen accumulation and conduction system disease. The accumulated glycogen can serve as an energy source, and the animals have contractile reserve during exercise. Because the dominant-negative alpha2 subunit attenuates the mutant PRKAG2 phenotype, AMPK complexes containing the alpha2 rather than the alpha1 subunit are the primary mediators of the effects of PRKAG2 mutations.


Asunto(s)
Cardiomiopatías/genética , Complejos Multienzimáticos/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Sustitución de Aminoácidos , Animales , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Ecocardiografía , Prueba de Esfuerzo , Humanos , Ratones , Ratones Transgénicos , Complejos Multienzimáticos/metabolismo , Mutación Missense , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
4.
J Am Coll Cardiol ; 42(5): 942-51, 2003 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-12957447

RESUMEN

OBJECTIVES: We sought to characterize an animal model of the Wolff-Parkinson-White (WPW) syndrome to help elucidate the mechanisms of accessory pathway formation. BACKGROUND: Patients with mutations in PRKAG2 manifest cardiac hypertrophy and ventricular pre-excitation; however, the mechanisms underlying the development and conduction of accessory pathways remain unknown. METHODS: We created transgenic mice overexpressing either the Asn488Ile mutant (TG(N488I)) or wild-type (TG(WT)) human PRKAG2 complementary deoxyribonucleic acid under a cardiac-specific promoter. Both groups of transgenic mice underwent intracardiac electrophysiologic, electrocardiographic (ECG), and histologic analyses. RESULTS: On the ECG, approximately 50% of TG(N488I) mice displayed sinus bradycardia and features suggestive of pre-excitation, not seen in TG(WT) mice. The electrophysiologic studies revealed a distinct atrioventricular (AV) connection apart from the AV node, using programmed stimulation. In TG(N488I) mice with pre-excitation, procainamide blocked bypass tract conduction, whereas adenosine infusion caused AV block in TG(WT) mice but not TG(N488I) mice with pre-excitation. Serial ECGs in 16 mice pups revealed no differences at birth. After one week, two of eight TG(N488I) pups had ECG features of pre-excitation, increasing to seven of eight pups by week 4. By nine weeks, one TG(N488I) mouse with WPW syndrome lost this phenotype, whereas TG(WT) pups never developed pre-excitation. Histologic investigation revealed postnatal development of myocardial connections through the annulus fibrosum of the AV valves in young TG(N488I) but not TG(WT) mice. CONCLUSIONS: Transgenic mice overexpressing the Asn488Ile PRKAG2 mutation recapitulate an electrophysiologic phenotype similar to humans with this mutation. This includes procainamide-sensitive, adenosine-resistant accessory pathways induced in postnatal life that may rarely disappear later in life.


Asunto(s)
Cardiomegalia/genética , Modelos Animales de Enfermedad , Complejos Multienzimáticos/genética , Mutación Missense/genética , Síndromes de Preexcitación/diagnóstico , Síndromes de Preexcitación/genética , Proteínas Serina-Treonina Quinasas/genética , Disfunción Ventricular/diagnóstico , Disfunción Ventricular/genética , Síndrome de Wolff-Parkinson-White/genética , Proteínas Quinasas Activadas por AMP , Adenosina , Factores de Edad , Animales , Antiarrítmicos , Biopsia , Cardiomegalia/complicaciones , Cardiomegalia/patología , Progresión de la Enfermedad , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas/métodos , Electrofisiología , Genotipo , Sistema de Conducción Cardíaco , Ratones , Ratones Transgénicos , Fenotipo , Procainamida , Método Simple Ciego , Síndrome de Wolff-Parkinson-White/complicaciones , Síndrome de Wolff-Parkinson-White/patología
6.
PLoS One ; 3(12): e3968, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19092997

RESUMEN

The genetic basis of myotonic dystrophy type I (DM1) is the expansion of a CTG tract located in the 3' untranslated region of DMPK. Expression of mutant RNAs encoding expanded CUG repeats plays a central role in the development of cardiac disease in DM1. Expanded CUG tracts form both nuclear and cytoplasmic aggregates, yet the relative significance of such aggregates in eliciting DM1 pathology is unclear. To test the pathophysiology of CUG repeat encoding RNAs, we developed and analyzed mice with cardiac-specific expression of a beta-galactosidase cassette in which a (CTG)(400) repeat tract was positioned 3' of the termination codon and 5' of the bovine growth hormone polyadenylation signal. In these animals CUG aggregates form exclusively in the cytoplasm of cardiac cells. A key pathological consequence of expanded CUG repeat RNA expression in DM1 is aberrant RNA splicing. Abnormal splicing results from the functional inactivation of MBNL1, which is hypothesized to occur due to MBNL1 sequestration in CUG foci or from elevated levels of CUG-BP1. We therefore tested the ability of cytoplasmic CUG foci to elicit these changes. Aggregation of CUG RNAs within the cytoplasm results both in Mbnl1 sequestration and in approximately a two fold increase in both nuclear and cytoplasmic Cug-bp1 levels. Significantly, despite these changes RNA splice defects were not observed and functional analysis revealed only subtle cardiac dysfunction, characterized by conduction defects that primarily manifest under anesthesia. Using a human myoblast culture system we show that this transgene, when expressed at similar levels to a second transgene, which encodes expanded CTG tracts and facilitates both nuclear focus formation and aberrant splicing, does not elicit aberrant splicing. Thus the lack of toxicity of cytoplasmic CUG foci does not appear to be a consequence of low expression levels. Our results therefore demonstrate that the cellular location of CUG RNA aggregates is an important variable that influences toxicity and support the hypothesis that small molecules that increase the rate of transport of the mutant DMPK RNA from the nucleus into the cytoplasm may significantly improve DM1 pathology.


Asunto(s)
Citoplasma/metabolismo , Distrofia Miotónica/genética , Proteínas Serina-Treonina Quinasas/genética , ARN/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Proteínas CELF1 , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/genética , Proteínas de Unión al ADN/metabolismo , Operón Lac , Complejo Mayor de Histocompatibilidad/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/genética , Proteínas de Unión al ARN/metabolismo , Transgenes , Expansión de Repetición de Trinucleótido/genética
7.
Proc Natl Acad Sci U S A ; 102(50): 18123-8, 2005 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-16332958

RESUMEN

Sarcomere protein gene mutations cause hypertrophic cardiomyopathy (HCM), a disease with distinctive histopathology and increased susceptibility to cardiac arrhythmias and risk for sudden death. Myocyte disarray (disorganized cell-cell contact) and cardiac fibrosis, the prototypic but protean features of HCM histopathology, are presumed triggers for ventricular arrhythmias that precipitate sudden death events. To assess relationships between arrhythmias and HCM pathology without confounding human variables, such as genetic heterogeneity of disease-causing mutations, background genotypes, and lifestyles, we studied cardiac electrophysiology, hypertrophy, and histopathology in mice engineered to carry an HCM mutation. Both genetically outbred and inbred HCM mice had variable susceptibility to arrhythmias, differences in ventricular hypertrophy, and variable amounts and distribution of histopathology. Among inbred HCM mice, neither the extent nor location of myocyte disarray or cardiac fibrosis correlated with ex vivo signal conduction properties or in vivo electrophysiologically stimulated arrhythmias. In contrast, the amount of ventricular hypertrophy was significantly associated with increased arrhythmia susceptibility. These data demonstrate that distinct somatic events contribute to variable HCM pathology and that cardiac hypertrophy, more than fibrosis or disarray, correlates with arrhythmic risk. We suggest that a shared pathway triggered by sarcomere gene mutations links cardiac hypertrophy and arrhythmias in HCM.


Asunto(s)
Arritmias Cardíacas/etiología , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/patología , Muerte Súbita Cardíaca/etiología , Animales , Cardiomiopatía Hipertrófica/genética , Electrocardiografía , Electrofisiología , Uniones Intercelulares/patología , Ratones , Ratones Mutantes , Modelos Biológicos , Mutación/genética , Miocardio/patología , Miocitos Cardíacos/citología , Sarcómeros/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA