Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 175(2): 530-543.e24, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220458

RESUMEN

The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.


Asunto(s)
Nefritis Intersticial/virología , Parvovirus/aislamiento & purificación , Parvovirus/patogenicidad , Animales , Australia , Progresión de la Enfermedad , Femenino , Fibrosis/patología , Fibrosis/virología , Humanos , Riñón/metabolismo , Riñón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Nefritis Intersticial/fisiopatología , América del Norte , Infecciones por Parvoviridae/metabolismo
2.
Am J Pathol ; 192(2): 195-207, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767812

RESUMEN

To catalyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, including development of novel interventive and preventive strategies, the progression of disease was characterized in a robust coronavirus disease 2019 (COVID-19) animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14, and 28 days after inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2-inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 after inoculation, corresponding with widespread necrosis and inflammation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 after inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.


Asunto(s)
COVID-19/patología , Animales , COVID-19/virología , Cricetinae , Modelos Animales de Enfermedad , Femenino , Pulmón/patología , Masculino , Mesocricetus , SARS-CoV-2
3.
J Pathol ; 238(2): 359-67, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26387837

RESUMEN

Animal models are essential research tools in modern biomedical research, but there are concerns about their lack of reproducibility and the failure of animal data to translate into advances in human medical therapy. A major factor in improving experimental reproducibility is thorough communication of research methodologies. The recently published ARRIVE guidelines outline basic information that should be provided when reporting animal studies. This paper builds on ARRIVE by providing the minimum information needed in reports to allow proper assessment of pathology data gathered from animal tissues. This guidance covers aspects of experimental design, technical procedures, data gathering, analysis, and presentation that are potential sources of variation when creating morphological, immunohistochemical (IHC) or in situ hybridization (ISH) datasets. This reporting framework will maximize the likelihood that pathology data derived from animal experiments can be reproduced by ensuring that sufficient information is available to allow for replication of the methods and facilitate inter-study comparison by identifying potential interpretative confounders.


Asunto(s)
Modelos Animales , Patología/métodos , Guías de Práctica Clínica como Asunto , Experimentación Animal , Animales , Humanos , Difusión de la Información , Publicaciones , Proyectos de Investigación , Investigación Biomédica Traslacional
4.
Matter ; 6(2): 583-604, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36531610

RESUMEN

Coronaviruses have historically precipitated global pandemics of severe acute respiratory syndrome (SARS) into devastating public health crises. Despite the virus's rapid rate of mutation, all SARS coronavirus 2 (SARS-CoV-2) variants are known to gain entry into host cells primarily through complexation with angiotensin-converting enzyme 2 (ACE2). Although ACE2 has potential as a druggable decoy to block viral entry, its clinical use is complicated by its essential biological role as a carboxypeptidase and hindered by its structural and chemical instability. Here we designed supramolecular filaments, called fACE2, that can silence ACE2's enzymatic activity and immobilize ACE2 to their surface through enzyme-substrate complexation. This docking strategy enables ACE2 to be effectively delivered in inhalable aerosols and improves its structural stability and functional preservation. fACE2 exhibits enhanced and prolonged inhibition of viral entry compared with ACE2 alone while mitigating lung injury in vivo.

5.
bioRxiv ; 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35132418

RESUMEN

Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster ( Mesocricetus auratus ) model of COVID-19. Intranasal immunization resulted in high titers of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titers in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.

6.
ILAR J ; 62(3): 295-309, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36528817

RESUMEN

Laboratory registration codes, also known as laboratory codes or lab codes, are a key element in standardized laboratory animal and genetic nomenclature. As such they are critical to accurate scientific communication and to research reproducibility and integrity. The original committee on Mouse Genetic Nomenclature published nomenclature conventions for mice genetics in 1940, and then conventions for inbred strains in 1952. Unique designations were needed, and have been in use since the 1950s, for the sources of animals and substrains, for the laboratories that identified new alleles or mutations, and then for developers of transgenes and induced mutations. Current laboratory codes are typically a 2- to 4-letter acronym for an institution or an investigator. Unique codes are assigned from the International Laboratory Code Registry, which was developed and is maintained by ILAR in the National Academies (National Academies of Sciences Engineering and Medicine and previously National Academy of Sciences). As a resource for the global research community, the registry has been online since 1997. Since 2003 mouse and rat genetic and strain nomenclature rules have been reviewed and updated annually as a joint effort of the International Committee on Standardized Genetic Nomenclature for Mice and the Rat Genome and Nomenclature Committee. The current nomenclature conventions (particularly conventions for non-inbred animals) are applicable beyond rodents, although not widely adopted. Ongoing recognition, since at least the 1930s, of the research relevance of genetic backgrounds and origins of animals, and of spontaneous and induced genetic variants speaks to the need for broader application of standardized nomenclature for animals in research, particularly given the increasing numbers and complexities of genetically modified swine, nonhuman primates, fish, and other species.


Asunto(s)
Animales de Laboratorio , Laboratorios , Ratones , Animales , Ratas , Porcinos , Reproducibilidad de los Resultados , Animales de Laboratorio/genética
7.
ILAR J ; 62(1-2): 203-222, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34877602

RESUMEN

Clinical pathology testing for investigative or biomedical research and for preclinical toxicity and safety assessment in laboratory animals is a distinct specialty requiring an understanding of species specific and other influential variables on results and interpretation. This review of clinical pathology principles and testing recommendations in laboratory animal species aims to provide a useful resource for researchers, veterinary specialists, toxicologists, and clinical or anatomic pathologists.


Asunto(s)
Investigación Biomédica , Patología Clínica , Animales , Animales de Laboratorio , Perros , Ratones , Primates , Conejos , Ratas , Porcinos , Porcinos Enanos
8.
ILAR J ; 62(3): 278-294, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36515581

RESUMEN

The Institute for Laboratory Animal Research (ILAR) was created within the National Academies of Sciences, Engineering, and Medicine (National Academies) in 1953 when biomedical research using animals was in its infancy in terms of quantity, quality, complexity, sophistication, and care. Over the intervening 69 years, ILAR has witnessed unprecedented growth, followed by unprecedented decline, and then regrowth in usage of specific species and models and an overall shift in experimental burden away from larger to smaller species (ie, mice, fish, and rats). ILAR has contributed much to the evolution of necessary research using animals and animal models for the benefit of humans, animals, and the environment and to the development and implementation of humane principles and standards for care and use of research animals. ILAR has served as a "neutral broker" seeking consensus, solutions, common ground, and pathways forward for all professional constituencies engaged in conduct of animal research. In 2022, ILAR will become the Board on Animal Health Sciences, Conservation, and Research (BAHSCR) within the Division on Earth and Life Studies of the National Academies and the ILAR Journal will pause publication with volume 62. This manuscript recounts the history and accomplishments of ILAR 1953-2022, emphasizing the past 2 decades. The manuscript draws upon ILAR's communications and previously published histories to document ILAR's leaders, reports, publications, conferences, workshops, and roundtables using text, tables, references, and extensive supplemental tables. The authors' intention is to provide the scientific community with a single source document for ILAR, and they apologize for any omissions and errors.


Asunto(s)
Experimentación Animal , Investigación Biomédica , Animales , Humanos , Ratones , Ratas , Estados Unidos , Animales de Laboratorio , Modelos Animales
9.
ILAR J ; 62(1-2): 77-132, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34979559

RESUMEN

Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.


Asunto(s)
Fenómenos Biológicos , Enfermedades Transmisibles , Animales , Cricetinae , Gerbillinae , Cobayas , Ratones , Ratas Topo , Conejos
10.
ILAR J ; 62(1-2): 133-168, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33712827

RESUMEN

Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.


Asunto(s)
Cabras , Enfermedades de los Porcinos , Animales , Animales de Laboratorio , Modelos Animales de Enfermedad , Perros , Hurones , Ovinos , Porcinos
11.
Theranostics ; 10(7): 2888-2896, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194842

RESUMEN

Auger radiopharmaceutical therapy is a promising strategy for micrometastatic disease given high linear energy transfer and short range in tissues, potentially limiting normal tissue toxicities. We previously demonstrated anti-tumor efficacy of a small-molecule Auger electron emitter targeting the prostate-specific membrane antigen (PSMA), 2-[3-[1-carboxy-5-(4-[125I]iodo-benzoylamino)-pentyl]-ureido]-pentanedioic acid), or 125I-DCIBzL, in a mouse xenograft model. Here, we investigated the therapeutic efficacy, long-term toxicity, and biodistribution of 125I-DCIBzL in a micrometastatic model of prostate cancer (PC). Methods: To test the therapeutic efficacy of 125I-DCIBzL in micrometastatic PC, we used a murine model of human metastatic PC in which PSMA+ PC3-ML cells expressing firefly luciferase were injected intravenously in NSG mice to form micrometastatic deposits. One week later, 0, 0.37, 1.85, 3.7, 18.5, 37, or 111 MBq of 125I-DCIBzL was administered (intravenously). Metastatic tumor burden was assessed using bioluminescence imaging (BLI). Long-term toxicity was evaluated via serial weights and urinalysis of non-tumor-bearing mice over a 12-month period, as well as final necropsy. Results: In the micrometastatic PC model, activities of 18.5 MBq 125I-DCIBzL and above significantly delayed development of detectable metastatic disease by BLI and prolonged survival in mice. Gross metastases were detectable in control mice and those treated with 0.37-3.7 MBq 125I-DCIBzL at a median of 2 weeks post-treatment, versus 4 weeks for those treated with 18.5-111 MBq 125I-DCIBzL (P<0.0001 by log-rank test). Similarly, treatment with ≥18.5 MBq 125I-DCIBzL yielded a median survival of 11 weeks, compared with 6 weeks for control mice (P<0.0001). At 12 months, there was no appreciable toxicity via weight, urinalysis, or necropsy evaluation in mice treated with any activity of 125I-DCIBzL, which represents markedly less toxicity than the analogous PSMA-targeted α-particle emitter. Macro-to-microscale dosimetry modeling demonstrated lower absorbed dose in renal cell nuclei versus tumor cell nuclei due to lower levels of drug uptake and cellular internalization in combination with the short range of Auger emissions. Conclusion: PSMA-targeted radiopharmaceutical therapy with the Auger emitter 125I-DCIBzL significantly delayed development of detectable metastatic disease and improved survival in a micrometastatic model of PC, with no long-term toxicities noted at 12 months, suggesting a favorable therapeutic ratio for treatment of micrometastatic PC.


Asunto(s)
Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Radioisótopos de Yodo/administración & dosificación , Glicoproteínas de Membrana/antagonistas & inhibidores , Metástasis de la Neoplasia , Neoplasias de la Próstata , Radiofármacos/uso terapéutico , Animales , Humanos , Masculino , Ratones , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/radioterapia , Células PC-3 , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Mucosal Immunol ; 13(3): 493-506, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31932715

RESUMEN

Mice deficient in the IL-10 pathway are the most widely used models of intestinal immunopathology. IL-17A is strongly implicated in gut disease in mice and humans, but conflicting evidence has drawn IL-17's role in the gut into question. IL-22 regulates antimicrobial and repair activities of intestinal epithelial cells (IECs) and is closely associated with IL-17A responses but it's role in chronic disease is uncertain. We report that IL-22, like IL-17A, is aberrantly expressed in colitic Il10-/- mice. While IL-22+ Th17 cells were elevated in the colon, IL-22-producing ILC3s were highly enriched in the small intestines of Il10-/- mice. Remarkably, Il10-/-Il22-/- mice did not develop colitis despite retaining high levels of Th17 cells and remaining colonized with colitogenic Helicobacter spp. Accordant with IL-22-induced IEC proliferation, the epithelia hyperplasia observed in Il10-/- animals was reversed in Il10-/-Il22-/- mice. Also, the high levels of antimicrobial IL-22-target genes, including Reg3g, were normalized in Il10-/-Il22-/- mice. Consistent with a heightened antimicrobial environment, Il10-/- mice had reduced diversity of the fecal microbiome that was reestablished in Il10-/-Il22-/- animals. These data suggest that spontaneous colitis in Il10-/- mice is driven by IL-22 and implicates an underappreciated IL-10/IL-22 axis in regulating intestinal homeostasis.


Asunto(s)
Colitis/etiología , Colitis/metabolismo , Susceptibilidad a Enfermedades , Interleucina-10/deficiencia , Interleucinas/genética , Interleucinas/metabolismo , Animales , Biopsia , Colitis/patología , Modelos Animales de Enfermedad , Expresión Génica , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunofenotipificación , Leucocitos/inmunología , Leucocitos/metabolismo , Leucocitos/patología , Recuento de Linfocitos , Ratones , Ratones Noqueados , Modelos Biológicos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Interleucina-22
13.
EJNMMI Res ; 10(1): 96, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32804262

RESUMEN

PURPOSE: To evaluate the safety, feasibility, and preliminary efficacy of yttrium-90 (90Y) radioembolization (RE) as a minimally invasive treatment in a canine model with presumed spontaneous brain cancers. MATERIALS: Three healthy research dogs (R1-R3) and five patient dogs with spontaneous intra-axial brain masses (P1-P5) underwent cerebral artery RE with 90Y glass microspheres (TheraSphere). 90Y-RE was performed on research dogs from the unilateral internal carotid artery (ICA), middle cerebral artery (MCA), and posterior cerebral artery (PCA) while animals with brain masses were treated from the ICA. Post-treatment 90Y PET/CT was performed along with serial neurological exams by a veterinary neurologist. One month after treatment, research dogs were euthanized and the brains were extracted and sent for microdosimetric and histopathologic analyses. Patient dogs received post-treatment MRI at 1-, 3-, and 6-month intervals with long-term veterinary follow-up. RESULTS: The average absorbed dose to treated tissue in R1-R3 was 14.0, 30.9, and 73.2 Gy, respectively, with maximum doses exceeding 1000 Gy. One month after treatment, research dog pathologic analysis revealed no evidence of cortical atrophy and rare foci consistent with chronic infarcts, e.g., < 2-mm diameter. Absorbed doses to masses in P1-P5 were 45.5, 57.6, 58.1, 45.4, and 64.1 Gy while the dose to uninvolved brain tissue was 15.4, 27.6, 19.2, 16.7, and 33.3 G, respectively. Among both research and patient animals, 6 developed acute neurologic deficits following treatment. However, in all surviving dogs, the deficits were transient resolving between 7 and 33 days post-therapy. At 1 month post-therapy, patient animals showed a 24-94% reduction in mass volume with partial response in P1, P3, and P4 at 6 months post-treatment. While P2 initially showed a response, by 5 months, the mass had advanced beyond pre-treatment size, and the dog was euthanized. CONCLUSION: This proof of concept demonstrates the technical feasibility and safety of 90Y-RE in dogs, while preliminary, initial data on the efficacy of 90Y-RE as a potential treatment for brain cancer is encouraging.

15.
Biochem Biophys Res Commun ; 384(1): 93-9, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19393222

RESUMEN

There is much speculation whether extravascular inflammation accelerates atherosclerosis. We tested this hypothesis in apoE(-/-) mice using three well-characterized models of non-autoimmune chronic inflammation: croton oil-induced skin inflammation, Aspergillus fumigatus antigen-induced allergic lung disease, and A. fumigatus antigen-induced peritonitis. The croton oil model produced recurrent inflammatory skin ulceration, and marked increases in plasma levels of IL-6 and serum amyloid A (SAA). The allergic lung disease model showed strong local inflammation with eosinophilic infiltration and serum IgE induction. The recurrent peritonitis model was accompanied by mild elevation in plasma SAA levels. Aortic atherosclerosis was quantified by computer-assisted morphometry of en face arteries in apoE(-/-) mice at 34 weeks for the croton oil model, 26 and 42 weeks for the allergic lung disease model, and 26 weeks for the peritonitis model. We found that all three forms of chronic extravascular inflammation had no effect on the rate of atherosclerosis development.


Asunto(s)
Aspergilosis Broncopulmonar Alérgica/complicaciones , Aspergillus fumigatus , Aterosclerosis/etiología , Dermatitis/complicaciones , Peritonitis/complicaciones , Animales , Antígenos Fúngicos/inmunología , Apolipoproteínas E/genética , Aspergilosis Broncopulmonar Alérgica/inmunología , Aspergillus fumigatus/inmunología , Aterosclerosis/genética , Aterosclerosis/inmunología , Ratones , Ratones Noqueados
16.
J Cell Biol ; 157(2): 303-14, 2002 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-11956231

RESUMEN

The low-density lipoprotein receptor-related protein (Lrp)-5 functions as a Wnt coreceptor. Here we show that mice with a targeted disruption of Lrp5 develop a low bone mass phenotype. In vivo and in vitro analyses indicate that this phenotype becomes evident postnatally, and demonstrate that it is secondary to decreased osteoblast proliferation and function in a Cbfa1-independent manner. Lrp5 is expressed in osteoblasts and is required for optimal Wnt signaling in osteoblasts. In addition, Lrp5-deficient mice display persistent embryonic eye vascularization due to a failure of macrophage-induced endothelial cell apoptosis. These results implicate Wnt proteins in the postnatal control of vascular regression and bone formation, two functions affected in many diseases. Moreover, these features recapitulate human osteoporosis-pseudoglioma syndrome, caused by LRP5 inactivation.


Asunto(s)
Enfermedades Óseas Metabólicas/patología , Anomalías del Ojo/metabolismo , Proteínas de Neoplasias , Osteoblastos/metabolismo , Osteoblastos/patología , Proteínas Proto-Oncogénicas/metabolismo , Receptores de LDL/deficiencia , Factores de Transcripción/fisiología , Proteínas de Pez Cebra , Animales , Apoptosis , Desarrollo Óseo , Enfermedades Óseas Metabólicas/metabolismo , Huesos/metabolismo , Huesos/patología , Calcio/sangre , Calcio/orina , División Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Ojo/citología , Ojo/patología , Anomalías del Ojo/patología , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Proteínas Relacionadas con Receptor de LDL , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Tamaño de los Órganos , Fenotipo , Proteínas Proto-Oncogénicas/genética , Receptores de LDL/genética , Receptores de LDL/inmunología , Receptores de LDL/metabolismo , Transducción de Señal , Proteínas Wnt
17.
Infect Immun ; 76(8): 3511-24, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18505812

RESUMEN

A number of important helminth parasites of humans have incorporated short-term residence in the lungs as an obligate phase of their life cycles. The significance of this transient pulmonary exposure to the infection and immunity is not clear. Employing a rodent model of infection with hookworm (Nippostrongylus brasiliensis), we characterized the long-term changes in the immunological status of the lungs induced by parasite infection. At 36 days after infection, alterations included a sustained increase in the transcription of both Th2 and Th1 cytokines as well as a significant increase in the number and frequency of alveolar macrophages displaying an alternatively activated phenotype. While N. brasiliensis did not induce alternate activation of lung macrophages in STAT6(-/-) animals, the parasite did induce a robust Th17 response in the pulmonary environment, suggesting that STAT6 signaling plays a role in modulating Th17 immunity and pathology in the lungs. In the context of the cellular and molecular changes induced by N. brasiliensis infection, there was a significant reduction in overall airway responsiveness and lung inflammation in response to allergen. In addition, the N. brasiliensis-altered pulmonary environment showed dramatic alterations in the nature and number of genes that were up- and downregulated in the lung in response to allergen challenge. The results demonstrate that even a transient exposure to a helminth parasite can effect significant and protracted changes in the immunological environment of the lung and that these complex molecular and cellular changes are likely to play a role in modulating a subsequent allergen-induced inflammatory response.


Asunto(s)
Pulmón/inmunología , Pulmón/parasitología , Nippostrongylus/inmunología , Alérgenos/inmunología , Animales , Citocinas/biosíntesis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Activación de Macrófagos , Macrófagos Alveolares/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Transcripción STAT6/deficiencia
18.
ILAR J ; 59(3): 211-246, 2018 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31197363

RESUMEN

In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.


Asunto(s)
Investigación Biomédica Traslacional/métodos , Animales , Modelos Animales de Enfermedad , Variación Genética , Sistema Inmunológico/inmunología , Ratones
19.
ILAR J ; 59(1): 1-3, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31329902

RESUMEN

This issue of ILAR Journal focusses on pathology and pathologists in biomedical research, more specifically in preclinical translational research involving (nonhuman) animals, emphasizing academic settings. Considerations in study design and planning to maximize benefit from pathologists and pathology resources are reviewed. Adjunctive technologies including molecular techniques, digital pathology, and imaging are highlighted. Additional considerations regarding safety and regulatory concerns, and veterinary clinical trials are reviewed as well. Pathology has been fundamental to understanding clinical disease, remains fundamental to diagnosing disease, and is required in drug and device development. Broader integration of pathology expertise and well-designed pathology investigations have much to offer research rigor and reproducibility, and successful translation from biomedical research.


Asunto(s)
Investigación Biomédica/métodos , Patología/métodos , Investigación Biomédica Traslacional/métodos , Animales , Humanos , Reproducibilidad de los Resultados
20.
Clin Cancer Res ; 23(2): 536-548, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27440271

RESUMEN

PURPOSE: To evaluate safety and characterize anticancer efficacy of hepatic hypoxia-activated intra-arterial therapy (HAIAT) with evofosfamide in a rabbit model. EXPERIMENTAL DESIGN: VX2-tumor-bearing rabbits were assigned to 4 intra-arterial therapy (IAT) groups (n = 7/group): (i) saline (control); (ii) evofosfamide (Evo); (iii) doxorubicin-lipiodol emulsion followed by embolization with 100-300 µm beads (conventional, cTACE); or (iv) cTACE and evofosfamide (cTACE + Evo). Blood samples were collected pre-IAT and 1, 2, 7, and 14 days post-IAT. A semiquantitative scoring system assessed hepatocellular damage. Tumor volumes were segmented on multidetector CT (baseline, 7/14 days post-IAT). Pathologic tumor necrosis was quantified using manual segmentation on whole-slide images. Hypoxic fraction (HF) and compartment (HC) were determined by pimonidazole staining. Tumor DNA damage, apoptosis, cell proliferation, endogenous hypoxia, and metabolism were quantified (γ-H2AX, Annexin V, caspase-3, Ki-67, HIF1α, VEGF, GAPDH, MCT4, and LDH). RESULTS: cTACE + Evo showed a similar profile of liver enzymes elevation and pathologic scores compared with cTACE. Neither hematologic nor renal toxicity were observed. Animals treated with cTACE + Evo demonstrated smaller tumor volumes, lower tumor growth rates, and higher necrotic fractions compared with cTACE. cTACE + Evo resulted in a marked reduction in the HF and HC. Correlation was observed between decreases in HF or HC and tumor necrosis. cTACE + Evo promoted antitumor effects as evidenced by increased expression of γ-H2AX, apoptotic biomarkers, and decreased cell proliferation. Increased HIF1α/VEGF expression and tumor glycolysis supported HAIAT. CONCLUSIONS: HAIAT achieved a promising step towards the locoregional targeting of tumor hypoxia. The favorable toxicity profile and enhanced anticancer effects of evofosfamide in combination with cTACE pave the way towards clinical trials in patients with liver cancer. Clin Cancer Res; 23(2); 536-48. ©2016 AACR.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Hepáticas/terapia , Nitroimidazoles/administración & dosificación , Mostazas de Fosforamida/administración & dosificación , Hipoxia Tumoral , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , ADN Tumoral Circulante/genética , Terapia Combinada , Modelos Animales de Enfermedad , Doxorrubicina/administración & dosificación , Aceite Etiodizado/administración & dosificación , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA