Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Chem Educ ; 101(8): 3390-3395, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39161695

RESUMEN

Solubility is an essential concept in chemistry that describes the ability of a substance to dissolve in a particular solvent. Despite its importance in many fields of science, understanding the basic principles of solubility is challenging for many undergraduate students. Notably, students often encounter difficulties in comprehending the role of counterions when dealing with charged molecules. Here, we bring the opportunity to assimilate the key concepts of solubility regarding the role of counterions by developing a straightforward, cheap, and visually appealing experiment that focuses on the strategic use of counterions to control solubility. A student questionnaire delivered encouraging results with most of students giving positive feedback in both interest and training their hands-on skills. Hence, our experiment offers a proficient understanding of the solubility concept, thus preparing undergraduate students for advanced courses in the various subject areas of chemistry.

2.
Angew Chem Int Ed Engl ; 63(1): e202311635, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919232

RESUMEN

There has been increasing interest in methods to generate synthetic lipid membranes as key constituents of artificial cells or to develop new tools for remodeling membranes in living cells. However, the biosynthesis of phospholipids involves elaborate enzymatic pathways that are challenging to reconstitute in vitro. An alternative approach is to use chemical reactions to non-enzymatically generate natural or non-canonical phospholipids de novo. Previous reports have shown that synthetic lipid membranes can be formed in situ using various ligation chemistries, but these methods lack biocompatibility and/or suffer from slow kinetics at physiological pH. Thus, it would be valuable to develop chemoselective strategies for synthesizing phospholipids from water-soluble precursors that are compatible with synthetic or living cells Here, we demonstrate that amide-forming ligations between lipid precursors bearing hydroxylamines and α-ketoacids (KAs) or potassium acyltrifluoroborates (KATs) can be used to prepare non-canonical phospholipids at physiological pH conditions. The generated amide-linked phospholipids spontaneously self-assemble into cell-like micron-sized vesicles similar to natural phospholipid membranes. We show that lipid synthesis using KAT ligation proceeds extremely rapidly, and the high selectivity and biocompatibility of the approach facilitates the in situ synthesis of phospholipids and associated membranes in living cells.


Asunto(s)
Amidas , Fosfolípidos , Hidroxilaminas
3.
J Am Chem Soc ; 145(49): 27149-27159, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38039527

RESUMEN

In cells, a vast number of membrane lipids are formed by the enzymatic O-acylation of polar head groups with acylating agents such as fatty acyl-CoAs. Although such ester-containing lipids appear to be a requirement for life on earth, it is unclear if similar types of lipids could have spontaneously formed in the absence of enzymatic machinery at the origin of life. There are few examples of enzyme-free esterification of amphiphiles in water and none that can occur in water at physiological pH using biochemically relevant acylating agents. Here we report the unexpected chemoselective O-acylation of 1,2-amino alcohol amphiphiles in water directed by Cu(II) and several other transition metal ions. In buffers containing Cu(II) ions, mixing biological 1,2-amino alcohol amphiphiles such as sphingosylphosphorylcholine with biochemically relevant acylating agents, namely, acyl adenylates and acyl-CoAs, leads to the formation of the O-acylation product with high selectivity. The resulting O-acylated sphingolipids self-assemble into vesicles with markedly different biophysical properties than those formed from their N-acyl counterparts. We also demonstrate that Cu(II) can direct the O-acylation of alternative 1,2-amino alcohols, including prebiotically relevant 1,2-amino alcohol amphiphiles, suggesting that simple mechanisms for aqueous esterification may have been prevalent on earth before the evolution of enzymes.


Asunto(s)
Prebióticos , Agua , Esterificación , Acilcoenzima A/metabolismo , Lípidos de la Membrana , Amino Alcoholes , Acilación
4.
Cytogenet Genome Res ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38056433

RESUMEN

Introduction The zinc finger BTB domain-containing protein ZBTB18 binds to FOXG1 to form a transcriptional repressive complex involved in neuronal differentiation. Disruption of the components of this complex results in chromosome 1q43-q44 deletion syndrome/intellectual developmental disorder 22 or in FOXG1 syndrome. Case presentation This study reports on five patients with cognitive and behavioral impairment, seizures, microcephaly, and/or congenital brain abnormalities. Whole exome sequencing identified deleterious ZBTB18 variants in three patients and deleterious FOXG1 variants in the remaining patients. We have detected a missense variant within the BTB domain of ZBTB18 in two affected monozygotic twins. In addition, we observed agenesis of the septum pellucidum in a missense FOXG1 carrier with a severe FOXG1 syndrome. Conclusion Although the ZBTB18 zinc finger domains harbor the majority of known deleterious variants, we report a novel de novo rare missense variant within the BTB domain. The agenesis of the septum pellucidum observed in a missense FOXG1 carrier could be considered as a novel clinical feature associated with FOXG1 syndrome. The severe FOXG1 syndrome in this patient contrasts with the milder phenotype expected for a missense. Genetic or environmental factors may explain this phenotypic variability in FOXG1 syndrome.

5.
Proc Natl Acad Sci U S A ; 117(31): 18206-18215, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32694212

RESUMEN

Living cells segregate molecules and reactions in various subcellular compartments known as organelles. Spatial organization is likely essential for expanding the biochemical functions of synthetic reaction systems, including artificial cells. Many studies have attempted to mimic organelle functions using lamellar membrane-bound vesicles. However, vesicles typically suffer from highly limited transport across the membranes and an inability to mimic the dense membrane networks typically found in organelles such as the endoplasmic reticulum. Here, we describe programmable synthetic organelles based on highly stable nonlamellar sponge phase droplets that spontaneously assemble from a single-chain galactolipid and nonionic detergents. Due to their nanoporous structure, lipid sponge droplets readily exchange materials with the surrounding environment. In addition, the sponge phase contains a dense network of lipid bilayers and nanometric aqueous channels, which allows different classes of molecules to partition based on their size, polarity, and specific binding motifs. The sequestration of biologically relevant macromolecules can be programmed by the addition of suitably functionalized amphiphiles to the droplets. We demonstrate that droplets can harbor functional soluble and transmembrane proteins, allowing for the colocalization and concentration of enzymes and substrates to enhance reaction rates. Droplets protect bound proteins from proteases, and these interactions can be engineered to be reversible and optically controlled. Our results show that lipid sponge droplets permit the facile integration of membrane-rich environments and self-assembling spatial organization with biochemical reaction systems.


Asunto(s)
Galactolípidos/química , Gotas Lipídicas , Orgánulos/química , Ingeniería Química , Detergentes , Membrana Dobles de Lípidos , Péptido Hidrolasas , Proteínas/química , Proteínas/metabolismo
6.
Chembiochem ; 23(5): e202100624, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936727

RESUMEN

All cells use organized lipid compartments to facilitate specific biological functions. Membrane-bound organelles create defined spatial environments that favor unique chemical reactions while isolating incompatible biological processes. Despite the fundamental role of cellular organelles, there is a scarcity of methods for preparing functional artificial lipid-based compartments. Here, we demonstrate a robust bioconjugation system for sequestering proteins into zwitterionic lipid sponge phase droplets. Incorporation of benzylguanine (BG)-modified phospholipids that form stable covalent linkages with an O6 -methylguanine DNA methyltransferase (SNAP-tag) fusion protein enables programmable control of protein capture. We show that this methodology can be used to anchor hydrophilic proteins at the lipid-aqueous interface, concentrating them within an accessible but protected chemical environment. SNAP-tag technology enables the integration of proteins that regulate complex biological functions in lipid sponge phase droplets, and should facilitate the development of advanced lipid-based artificial organelles.


Asunto(s)
Gotas Lipídicas , O(6)-Metilguanina-ADN Metiltransferasa , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Fosfolípidos , Proteínas
7.
Angew Chem Int Ed Engl ; 61(29): e202200549, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35546783

RESUMEN

Cell membranes define the boundaries of life and primarily consist of phospholipids. Living organisms assemble phospholipids by enzymatically coupling two hydrophobic tails to a soluble polar head group. Previous studies have taken advantage of micellar assembly to couple single-chain precursors, forming non-canonical phospholipids. However, biomimetic nonenzymatic coupling of two alkyl tails to a polar head-group remains challenging, likely due to the sluggish reaction kinetics of the initial coupling step. Here we demonstrate rapid de novo formation of biomimetic liposomes in water using dual oxime bond formation between two alkyl chains and a phosphocholine head group. Membranes can be generated from non-amphiphilic, water-soluble precursors at physiological conditions using micromolar concentrations of precursors. We demonstrate that functional membrane proteins can be reconstituted into synthetic oxime liposomes from bacterial extracts in the absence of detergent-like molecules.


Asunto(s)
Liposomas , Oximas , Membrana Celular/metabolismo , Liposomas/química , Fosfolípidos/química , Agua
8.
J Am Chem Soc ; 143(29): 11235-11242, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34260248

RESUMEN

Despite the central importance of lipid membranes in cellular organization, it is challenging to reconstitute their formation de novo from minimal chemical and biological elements. Here, we describe a chemoenzymatic route to membrane-forming noncanonical phospholipids in which cysteine-modified lysolipids undergo spontaneous coupling with fatty acyl-CoA thioesters generated enzymatically by a fatty acyl-CoA ligase. Due to the high efficiency of the reaction, we were able to optimize phospholipid formation in a cell-free transcription-translation (TX-TL) system. Combining DNA encoding the fatty acyl-CoA ligase with suitable lipid precursors enabled one-pot de novo synthesis of membrane-bound vesicles. Noncanonical sphingolipid synthesis was also possible by using a cysteine-modified lysosphingomyelin as a precursor. When the sphingomyelin-interacting protein lysenin was coexpressed alongside the acyl-CoA ligase, the in situ assembled membranes were spontaneously decorated with protein. Our strategy of coupling gene expression with membrane lipid synthesis in a one-pot fashion could facilitate the generation of proteoliposomes and brings us closer to the bottom-up generation of synthetic cells using recombinant synthetic biology platforms.


Asunto(s)
Sistema Libre de Células/metabolismo , Coenzima A Ligasas/metabolismo , Lípidos de la Membrana/metabolismo , Sistema Libre de Células/química , Coenzima A Ligasas/química , Coenzima A Ligasas/genética , Humanos , Lípidos de la Membrana/química
9.
J Am Chem Soc ; 143(23): 8533-8537, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33978402

RESUMEN

The de novo formation of lipid membranes from minimal reactive precursors is a major goal in synthetic cell research. In nature, the synthesis of membrane phospholipids is orchestrated by numerous enzymes, including fatty acid synthases and membrane-bound acyltransferases. However, these enzymatic pathways are difficult to fully reproduce in vitro. As such, the reconstitution of phospholipid membrane synthesis from simple metabolic building blocks remains a challenge. Here, we describe a chemoenzymatic strategy for lipid membrane generation that utilizes a soluble bacterial fatty acid synthase (cgFAS I) to synthesize palmitoyl-CoA in situ from acetyl-CoA and malonyl-CoA. The fatty acid derivative spontaneously reacts with a cysteine-modified lysophospholipid by native chemical ligation (NCL), affording a noncanonical amidophospholipid that self-assembles into micron-sized membrane-bound vesicles. To our knowledge, this is the first example of reconstituting phospholipid membrane formation directly from acetyl-CoA and malonyl-CoA precursors. Our results demonstrate that combining the specificity and efficiency of a type I fatty acid synthase with a highly selective bioconjugation reaction provides a biomimetic route for the de novo formation of membrane-bound vesicles.


Asunto(s)
Acido Graso Sintasa Tipo I/metabolismo , Fosfolípidos/biosíntesis , Acido Graso Sintasa Tipo I/química , Estructura Molecular , Fosfolípidos/química
10.
Chem Soc Rev ; 49(14): 4602-4614, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32691785

RESUMEN

Lipids remain one of the most enigmatic classes of biological molecules. Whereas lipids are well known to form basic units of membrane structure and energy storage, deciphering the exact roles and biological interactions of distinct lipid species has proven elusive. How these building blocks are synthesized, trafficked, and stored are also questions that require closer inspection. This tutorial review covers recent advances on the preparation, derivatization, and analysis of lipids. In particular, we describe several chemical approaches that form part of a powerful toolbox for controlling and characterizing lipid structure. We believe these tools will be helpful in numerous applications, including the study of lipid-protein interactions and the development of novel drug delivery systems.


Asunto(s)
Lípidos/química , Sistemas de Liberación de Medicamentos , Proteínas/química
11.
Proc Natl Acad Sci U S A ; 113(31): 8589-94, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27439858

RESUMEN

Cell membranes have a vast repertoire of phospholipid species whose structures can be dynamically modified by enzymatic remodeling of acyl chains and polar head groups. Lipid remodeling plays important roles in membrane biology and dysregulation can lead to disease. Although there have been tremendous advances in creating artificial membranes to model the properties of native membranes, a major obstacle has been developing straightforward methods to mimic lipid membrane remodeling. Stable liposomes are typically kinetically trapped and are not prone to exchanging diacylphospholipids. Here, we show that reversible chemoselective reactions can be harnessed to achieve nonenzymatic spontaneous remodeling of phospholipids in synthetic membranes. Our approach relies on transthioesterification/acyl shift reactions that occur spontaneously and reversibly between tertiary amides and thioesters. We demonstrate exchange and remodeling of both lipid acyl chains and head groups. Using our synthetic model system we demonstrate the ability of spontaneous phospholipid remodeling to trigger changes in vesicle spatial organization, composition, and morphology as well as recruit proteins that can affect vesicle curvature. Membranes capable of chemically exchanging lipid fragments could be used to help further understand the specific roles of lipid structure remodeling in biological membranes.


Asunto(s)
Membrana Dobles de Lípidos/química , Liposomas/química , Lípidos de la Membrana/química , Fosfolípidos/química , Biomimética , Membrana Celular/química , Membranas Artificiales , Modelos Químicos , Modelos Moleculares
12.
J Am Chem Soc ; 140(50): 17374-17378, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30516377

RESUMEN

Post-translational S-palmitoylation plays a central role in protein localization, trafficking, stability, aggregation, and cell signaling. Dysregulation of palmitoylation pathways in cells can alter protein function and is the cause of several diseases. Considering the biological and clinical importance of S-palmitoylation, tools for direct, in vivo modulation of this lipid modification would be extremely valuable. Here, we describe a method for the cleavage of native S-palmitoyl groups from proteins in living cells. Using a cell permeable, cysteine-functionalized amphiphile, we demonstrate the direct depalmitoylation of cellular proteins. We show that amphiphile-mediated depalmitoylation (AMD) can effectively cleave S-palmitoyl groups from the native GTPase HRas and successfully depalmitoylate mislocalized proteins in an infantile neuronal ceroid lipofuscinosis (INCL) disease model. AMD enables direct and facile depalmitoylation of proteins in live cells and has potential therapeutic applications for diseases such as INCL, where native protein thioesterase activity is deficient.


Asunto(s)
Lipoilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Cisteína/análogos & derivados , Cisteína/farmacología , Proteína GAP-43/química , Proteína GAP-43/metabolismo , Humanos , Lipopéptidos/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/química
13.
J Am Chem Soc ; 140(27): 8388-8391, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29886740

RESUMEN

Biomimetic liposomes have a wide array of applications in several areas, ranging from medicinal chemistry to synthetic biology. Due to their biocompatibility and biological relevance, there is particular interest in the formation of synthetic phospholipid vesicles and the development of methods to tune their properties in a controlled manner. However, while true biological membranes are capable of responding to environmental stimuli by enzymatically remodeling their composition, synthetic liposomes are typically static once formed. Herein we report the chemoselective reaction of the natural amine-containing lysosphingomyelin with a series of long-chain aldehydes to form imines. This transformation results in the formation of phospholipid liposomes that are in dynamic equilibrium with the aldehyde-amine form. The reversibility of the imine linkage is exploited in the synthesis of vesicles that are capable of responding to external stimuli such as temperature or the addition of small molecules.


Asunto(s)
Materiales Biomiméticos/química , Iminas/química , Liposomas/química , Fosfolípidos/química , Aldehídos/química , Aminas/química , Biomimética/métodos , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Esfingosina/análogos & derivados , Esfingosina/química
14.
J Am Chem Soc ; 140(50): 17356-17360, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30495932

RESUMEN

Single-chain amphiphiles (SCAs) that self-assemble into large vesicular structures are attractive components of synthetic cells because of the simplicity of bilayer formation and increased membrane permeability. However, SCAs commonly used for vesicle formation suffer from restricted working pH ranges, instability to divalent cations, and the inhibition of biocatalysts. Construction of more robust biocompatible membranes from SCAs would have significant benefits. We describe the formation of highly stable vesicles from alkyl galactopyranose thioesters. The compatibility of these uncharged SCAs with biomolecules makes possible the encapsulation of functional enzymes and nucleic acids during the vesicle generation process, enabling membrane protein reconstitution and compartmentalized nucleic acid amplification, even when charged precursors are supplied externally.


Asunto(s)
Células Artificiales/química , Glucolípidos/química , Membrana Dobles de Lípidos/química , Tiogalactósidos/química , Animales , Bovinos , Permeabilidad de la Membrana Celular , ADN/genética , Replicación del ADN , Complejo IV de Transporte de Electrones/química , Glucolípidos/síntesis química , Membrana Dobles de Lípidos/síntesis química , Tensoactivos/síntesis química , Tensoactivos/química , Tiogalactósidos/síntesis química
15.
Langmuir ; 34(3): 750-755, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28982007

RESUMEN

A major goal of synthetic biology is the development of rational methodologies to construct self-assembling non-natural membranes, which could enable the efficient fabrication of artificial cellular systems from purely synthetic components. However, spatiotemporal control of artificial membrane formation remains both challenging and limited in scope. Here, we describe a new methodology to promote biomimetic phospholipid membrane formation by the photochemical activation of a catalyst-sensitizer dyad via an intramolecular photoinduced electron-transfer process. Our results offer future opportunities to exert spatiotemporal control over artificial cellular constructs.


Asunto(s)
Biomimética/métodos , Electrones , Membranas Artificiales , Fosfolípidos/química
16.
J Am Chem Soc ; 139(10): 3607-3610, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28263576

RESUMEN

Cell transmembrane receptors play a key role in the detection of environmental stimuli and control of intracellular communication. G protein-coupled receptors constitute the largest transmembrane protein family involved in cell signaling. However, current methods for their functional reconstitution in biomimetic membranes remain both challenging and limited in scope. Herein, we describe the spontaneous reconstitution of adenosine A2A receptor (A2AR) during the de novo formation of synthetic liposomes via native chemical ligation. The approach takes advantage of a nonenzymatic and chemoselective method to rapidly generate A2AR embedded phospholiposomes from receptor solubilized in n-dodecyl-ß-d-maltoside analogs. In situ lipid synthesis for protein reconstitution technology proceeds in the absence of dialysis and/or detergent absorbents, and A2AR assimilation into synthetic liposomes can be visualized by microscopy and probed by radio-ligand binding.


Asunto(s)
Liposomas/metabolismo , Receptor de Adenosina A2A/metabolismo , Humanos , Liposomas/síntesis química , Liposomas/química , Modelos Moleculares , Estructura Molecular , Receptor de Adenosina A2A/química
17.
Chemistry ; 21(36): 12564-70, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26149747

RESUMEN

There has been increasing interest in utilizing bottom-up approaches to develop synthetic cells. A popular methodology is the integration of functionalized synthetic membranes with biological systems, producing "hybrid" artificial cells. This Concept article covers recent advances and the current state-of-the-art of such hybrid systems. Specifically, we describe minimal supramolecular constructs that faithfully mimic the structure and/or function of living cells, often by controlling the assembly of highly ordered membrane architectures with defined functionality. These studies give us a deeper understanding of the nature of living systems, bring new insights into the origin of cellular life, and provide novel synthetic chassis for advancing synthetic biology.


Asunto(s)
Células Artificiales/química , Biomimética/tendencias , Membranas/química , Biología Sintética/tendencias , Fenómenos Biológicos
18.
Angew Chem Int Ed Engl ; 54(43): 12738-42, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26316292

RESUMEN

Transmembrane proteins are critical for signaling, transport, and metabolism, yet their reconstitution in synthetic membranes is often challenging. Non-enzymatic and chemoselective methods to generate phospholipid membranes in situ would be powerful tools for the incorporation of membrane proteins. Herein, the spontaneous reconstitution of functional integral membrane proteins during the de novo synthesis of biomimetic phospholipid bilayers is described. The approach takes advantage of bioorthogonal coupling reactions to generate proteoliposomes from micelle-solubilized proteins. This method was successfully used to reconstitute three different transmembrane proteins into synthetic membranes. This is the first example of the use of non-enzymatic chemical synthesis of phospholipids to prepare proteoliposomes.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Fosfolípidos/química , Proteolípidos/química , Animales , Bovinos , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Micelas , Fosfolípidos/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Proteolípidos/metabolismo
19.
Angew Chem Int Ed Engl ; 53(51): 14102-5, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25346090

RESUMEN

Phospholipid vesicles are of intense fundamental and practical interest, yet methods for their de novo generation from reactive precursors are limited. A non-enzymatic and chemoselective method to spontaneously generate phospholipid membranes from water-soluble starting materials would be a powerful tool for generating vesicles and studying lipid membranes. Here we describe the use of native chemical ligation (NCL) to rapidly prepare phospholipids spontaneously from thioesters. While NCL is one of the most popular tools for synthesizing proteins and nucleic acids, to our knowledge this is the first example of using NCL to generate phospholipids de novo. The lipids are capable of in situ synthesis and self-assembly into vesicles that can grow to several microns in diameter. The selectivity of the NCL reaction makes in situ membrane formation compatible with biological materials such as proteins. This work expands the application of NCL to the formation of phospholipid membranes.


Asunto(s)
Fosfolípidos/síntesis química , Ésteres/química , Estructura Molecular , Tamaño de la Partícula , Fosfolípidos/química , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
20.
Nat Chem ; 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39478161

RESUMEN

All known forms of life are composed of cells, whose boundaries are defined by lipid membranes that separate and protect cell contents from the environment. It is unknown how the earliest forms of life were compartmentalized. Several models have suggested a role for single-chain lipids such as fatty acids, but the membranes formed are often unstable, particularly when made from shorter alkyl chains (≤C8) that were probably more prevalent on prebiotic Earth. Here we show that the amino acid cysteine can spontaneously react with two short-chain (C8) thioesters to form diacyl lipids, generating protocell-like membrane vesicles. The three-component reaction takes place rapidly in water using low concentrations of reactants. Silica can catalyse the formation of protocells through a simple electrostatic mechanism. Several simple aminothiols react to form diacyl lipids, including short peptides. The protocells formed are compatible with functional ribozymes, suggesting that coupling of multiple short-chain precursors may have provided membrane building blocks during the early evolution of cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA