RESUMEN
INTRODUCTION: Tonne-Kalscheuer syndrome (TOKAS) is a recessive X-linked multiple congenital anomaly disorder caused by RLIM variations. Of the 41 patients reported, only 7 antenatal cases were described. METHOD: After the antenatal diagnosis of TOKAS by exome analysis in a family followed for over 35 years because of multiple congenital anomalies in five male fetuses, a call for collaboration was made, resulting in a cohort of 11 previously unpublished cases. RESULTS: We present a TOKAS antenatal cohort, describing 11 new cases in 6 French families. We report a high frequency of diaphragmatic hernia (9 of 11), differences in sex development (10 of 11) and various visceral malformations. We report some recurrent dysmorphic features, but also pontocerebellar hypoplasia, pre-auricular skin tags and olfactory bulb abnormalities previously unreported in the literature. Although no clear genotype-phenotype correlation has yet emerged, we show that a recurrent p.(Arg611Cys) variant accounts for 66% of fetal TOKAS cases. We also report two new likely pathogenic variants in RLIM, outside of the two previously known mutational hotspots. CONCLUSION: Overall, we present the first fetal cohort of TOKAS, describe the clinical features that made it a recognisable syndrome at fetopathological examination, and extend the phenotypical spectrum and the known genotype of this rare disorder.
Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Humanos , Masculino , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Feto/patología , Mutación , Fenotipo , Diagnóstico Prenatal , Secuenciación del Exoma , Estudios de Asociación Genética/métodos , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías Múltiples/diagnóstico , Linaje , EmbarazoRESUMEN
SCY1-like protein 2 (SCYL2) is a member of the SCY1-like pseudokinase family which regulates secretory protein trafficking. It plays a crucial role in the nervous system by suppressing excitotoxicity in the developing brain. Scyl2 knockout mice have excess prenatal mortality and survivors show severe neurological dysfunction. Bi-allelic loss-of-function (LOF) variants in SCYL2 were recently associated with arthrogryposis multiplex congenita-4 (AMC4) following the report of 6 individuals from two consanguineous unrelated families. The AMC4 phenotype described included severe arthrogryposis, corpus callosum agenesis, epilepsy and frequently, early death. We describe here two additional similarly affected individuals with AMC4, including one diagnosed in the prenatal period, with bi-allelic LOF variants in SCYL2, and two individuals homozygous for missense variants in the protein kinase domain of SCYL2 and presenting with developmental delay only. Our study confirms the association of SCYL2 with AMC4 and suggests a milder phenotype can occur, extending the phenotypic spectrum of autosomal recessive SCYL2-related disorders.
RESUMEN
INTRODUCTION: This study aims to define the phenotypic and molecular spectrum of the two clinical forms of ß-galactosidase (ß-GAL) deficiency, GM1-gangliosidosis and mucopolysaccharidosis IVB (Morquio disease type B, MPSIVB). METHODS: Clinical and genetic data of 52 probands, 47 patients with GM1-gangliosidosis and 5 patients with MPSIVB were analysed. RESULTS: The clinical presentations in patients with GM1-gangliosidosis are consistent with a phenotypic continuum ranging from a severe antenatal form with hydrops fetalis to an adult form with an extrapyramidal syndrome. Molecular studies evidenced 47 variants located throughout the sequence of the GLB1 gene, in all exons except 7, 11 and 12. Eighteen novel variants (15 substitutions and 3 deletions) were identified. Several variants were linked specifically to early-onset GM1-gangliosidosis, late-onset GM1-gangliosidosis or MPSIVB phenotypes. This integrative molecular and clinical stratification suggests a variant-driven patient assignment to a given clinical and severity group. CONCLUSION: This study reports one of the largest series of b-GAL deficiency with an integrative patient stratification combining molecular and clinical features. This work contributes to expand the community knowledge regarding the molecular and clinical landscapes of b-GAL deficiency for a better patient management.
Asunto(s)
Gangliosidosis GM1 , Mucopolisacaridosis IV , Femenino , Gangliósido G(M1) , Gangliosidosis GM1/genética , Humanos , Mucopolisacaridosis IV/genética , Mutación , Embarazo , beta-Galactosidasa/genéticaRESUMEN
PURPOSE: Molecular diagnosis based on singleton exome sequencing (sES) is particularly challenging in fetuses with multiple congenital abnormalities (MCA). Indeed, some studies reveal a diagnostic yield of about 20%, far lower than in live birth individuals showing developmental abnormalities (30%), suggesting that standard analyses, based on the correlation between clinical hallmarks described in postnatal syndromic presentations and genotype, may underestimate the impact of the genetic variants identified in fetal analyses. METHODS: We performed sES in 95 fetuses with MCA. Blind to phenotype, we applied a genotype-first approach consisting of combined analyses based on variants annotation and bioinformatics predictions followed by reverse phenotyping. Initially applied to OMIM-morbid genes, analyses were then extended to all genes. We complemented our approach by using reverse phenotyping, variant segregation analysis, bibliographic search and data sharing in order to establish the clinical significance of the prioritised variants. RESULTS: sES rapidly identified causal variant in 24/95 fetuses (25%), variants of unknown significance in OMIM genes in 8/95 fetuses (8%) and six novel candidate genes in 6/95 fetuses (6%). CONCLUSIONS: This method, based on a genotype-first approach followed by reverse phenotyping, shed light on unexpected fetal phenotype-genotype correlations, emphasising the relevance of prenatal studies to reveal extreme clinical presentations associated with well-known Mendelian disorders.
Asunto(s)
Anomalías Múltiples/genética , Anomalías Congénitas/genética , Exoma , Feto/anomalías , Estudios de Asociación Genética , Estudios de Cohortes , Exoma/genética , Genotipo , Humanos , Análisis de Secuencia de ADNRESUMEN
Sirenomelia is a rare severe malformation sequence of unknown cause characterized by fused legs and severe visceral abnormalities. We present a series of nine families including two rare familial aggregations of sirenomelia investigated by a trio-based exome sequencing strategy. This approach identified CDX2 variants in the two familial aggregations, both fitting an autosomal dominant pattern of inheritance with variable expressivity. CDX2 is a major regulator of caudal development in vertebrate and mouse heterozygotes are a previously described model of sirenomelia. Remarkably, the p.(Arg237His) variant has already been reported in a patient with persistent cloaca. Analysis of the sporadic cases revealed six additional candidate variants including a de novo frameshift variant in the genetically constrained NKD1 gene, encoding a known interactor of CDX2. We provide the first insights for a genetic contribution in human sirenomelia and highlight the role of Cdx and Wnt signaling pathways in the development of this disorder.
Asunto(s)
Ectromelia/diagnóstico , Ectromelia/genética , Secuenciación del Exoma , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Sustitución de Aminoácidos , Factor de Transcripción CDX2/genética , Proteínas de Unión al Calcio/genética , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Masculino , Linaje , FenotipoRESUMEN
Disease-causing variants in TGFB3 cause an autosomal dominant connective tissue disorder which is hard to phenotypically delineate because of the small number of identified cases. The purpose of this retrospective cross-sectional multicenter study is to elucidate the genotype and phenotype in an international cohort of TGFB3 patients. Eleven (eight novel) TGFB3 disease-causing variants were identified in 32 patients (17 families). Aortic root dilatation and mitral valve disease represented the most common cardiovascular findings, reported in 29% and 32% of patients, respectively. Dissection involving distal aortic segments occurred in two patients at age 50 and 52 years. A high frequency of systemic features (65% high-arched palate, 63% arachnodactyly, 57% pectus deformity, 52% joint hypermobility) was observed. In familial cases, incomplete penetrance and variable clinical expressivity were noted. Our cohort included the first described homozygous patient, who presented with a more severe phenotype compared to her heterozygous relatives. In conclusion, TGFB3 variants were associated with a high percentage of systemic features and aortic disease (dilatation/dissection) in 35% of patients. No deaths occurred from cardiovascular events or pregnancy-related complications. Nevertheless, homozygosity may be driving a more severe phenotype.
Asunto(s)
Aracnodactilia/genética , Enfermedades del Tejido Conjuntivo/genética , Síndrome de Loeys-Dietz/genética , Factor de Crecimiento Transformador beta3/genética , Adolescente , Adulto , Aracnodactilia/patología , Niño , Preescolar , Enfermedades del Tejido Conjuntivo/patología , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Heterocigoto , Homocigoto , Humanos , Síndrome de Loeys-Dietz/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Fenotipo , Factor de Crecimiento Transformador beta3/deficiencia , Adulto JovenRESUMEN
BACKGROUND: Rare copy number variations (CNVs) are a major cause of genetic diseases. Simple targeted methods are required for their confirmation and segregation analysis. We developed a simple and universal CNV assay based on digital PCR (dPCR) and universal locked nucleic acid (LNA) hydrolysis probes. METHODS: We analyzed the mapping of the 90 LNA hydrolysis probes from the Roche Universal ProbeLibrary (UPL). For each CNV, selection of the optimal primers and LNA probe was almost automated; probes were reused across assays and each dPCR assay included the CNV amplicon and a reference amplicon. We assessed the assay performance on 93 small and large CNVs and performed a comparative cost-efficiency analysis. RESULTS: UPL-LNA probes presented nearly 20000000 occurrences on the human genome and were homogeneously distributed with a mean interval of 156 bp. The assay accurately detected all the 93 CNVs, except one (<200 bp), with coefficient of variation <10%. The assay was more cost-efficient than all the other methods. CONCLUSIONS: The universal dPCR CNV assay is simple, robust, and cost-efficient because it combines a straightforward design allowed by universal probes and end point PCR, the advantages of a relative quantification of the target to the reference within the same reaction, and the high flexibility of the LNA hydrolysis probes. This method should be a useful tool for genomic medicine, which requires simple methods for the interpretation and segregation analysis of genomic variations.
Asunto(s)
Variaciones en el Número de Copia de ADN , ADN/análisis , Reacción en Cadena de la Polimerasa/métodos , Secuencia de Bases , ADN/genética , Genoma Humano , Humanos , Hidrólisis , Masculino , Oligonucleótidos/química , Reacción en Cadena de la Polimerasa/economía , Reproducibilidad de los ResultadosRESUMEN
Introduction: Prenatal ultrasound (US) anomalies are detected in around 5%-10% of pregnancies. In prenatal diagnosis, exome sequencing (ES) diagnostic yield ranges from 6% to 80% depending on the inclusion criteria. We describe the first French national multicenter pilot study aiming to implement ES in prenatal diagnosis following the detection of anomalies on US. Patients and methods: We prospectively performed prenatal trio-ES in 150 fetuses with at least two US anomalies or one US anomaly known to be frequently linked to a genetic disorder. Trio-ES was only performed if the results could influence pregnancy management. Chromosomal microarray (CMA) was performed before or in parallel. Results: A causal diagnosis was identified in 52/150 fetuses (34%) with a median time to diagnosis of 28 days, which rose to 56/150 fetuses (37%) after additional investigation. Sporadic occurrences were identified in 34/56 (60%) fetuses and unfavorable vital and/or neurodevelopmental prognosis was made in 13/56 (24%) fetuses. The overall diagnostic yield was 41% (37/89) with first-line trio-ES versus 31% (19/61) after normal CMA. Trio-ES and CMA were systematically concordant for identification of pathogenic CNV. Conclusion: Trio-ES provided a substantial prenatal diagnostic yield, similar to postnatal diagnosis with a median turnaround of approximately 1 month, supporting its routine implementation during the detection of prenatal US anomalies.
RESUMEN
The ARID1A gene is an infrequent cause of Coffin-Siris syndrome (CSS) and has been associated with severe to profound developmental delays and hypotonia in addition to characteristic craniofacial and digital findings. We present three fetuses and a male neonate with ventriculomegaly/hydrocephalus, absence of the corpus callosum (ACC), cerebellar hypoplasia, retinal dysplasia, lung lobulation defects, renal dysplasia, imperforate or anteriorly placed anus, thymus hypoplasia and a single umbilical artery. Facial anomalies included downslanting palpebral fissures, wide-spaced eyes, low-set and posteriorly rotated ears, a small jaw, widely spaced nipples and hypoplastic nails. All fetuses had heterozygous variants predicting premature protein truncation in ARID1A (c.4886dup:p.Val1630Cysfs*18; c.4860dup:p.Pro1621Thrfs*27; and c.175G>T:p.Glu59*) and the baby's microarray demonstrated mosaicism for a deletion at chromosome 1p36.11 (arr[GRCh37] 1p36.11(26,797,508_27,052,080)×1â¼2), that contained the first exon of ARID1A. Although malformations, in particular ACC, have been described with CSS caused by pathogenic variants in ARID1A, prenatal presentations associated with this gene are rare. Retinal dysplasia, lung lobulation defects and absent thymus were novel findings in association with ARID1A variants. Studies in cancer have demonstrated that pathogenic ARID1A variants hamper nuclear import of the protein and/or affect interaction with the subunits of SWI/SNF complex, resulting in dysregulation of the PI3K/AKT pathway and perturbed PTEN and PIKC3A signaling. As haploinsufficiency for PTEN and PIKC3A can be associated with ventriculomegaly/hydrocephalus, aberrant expression of these genes is a putative mechanism for the brain malformations demonstrated in patients with ARID1A variants.
Asunto(s)
Anomalías Múltiples/diagnóstico , Feto Abortado/patología , Proteínas de Unión al ADN/genética , Cara/anomalías , Deformidades Congénitas de la Mano/diagnóstico , Discapacidad Intelectual/diagnóstico , Micrognatismo/diagnóstico , Cuello/anomalías , Fenotipo , Factores de Transcripción/genética , Anomalías Múltiples/genética , Adulto , Femenino , Deformidades Congénitas de la Mano/genética , Humanos , Discapacidad Intelectual/genética , Micrognatismo/genética , Mutación , Embarazo , Diagnóstico PrenatalRESUMEN
BACKGROUND: Prenatal diagnosis of persistent left superior vena cava is increasing, but little is known about outcomes of infants with prenatally diagnosed isolated persistent left superior vena cava. OBJECTIVE: To assess the outcomes of infants with isolated persistent left superior vena cava diagnosed prenatally compared with infants with associated malformations. METHODS: All cases of persistent left superior vena cava confirmed by specialized fetal echocardiography in pregnant women were included from a single-centre prospective registry. Unfavourable outcome was defined as termination of pregnancy, in utero death, postnatal death or severe genetic syndrome missed prenatally. RESULTS: A total of 256 infants were included: 113 cases (44.1%) with isolated persistent left superior vena cava and 143 cases (55.9%) with associated malformations; respectively, 111 (98.2%) and 101 (70.6%) had a live birth. The median postnatal clinical follow-up was 3.6 years. Five-year postnatal survival with good outcome was estimated at: 100% (95% confidence interval 90.7% to 100%) in infants with isolated persistent left superior vena cava; 91.0% (74.0% to 98.1%) in infants with associated cardiac anomalies; 87.5% (51.8% to 97.3%) in infants with associated extracardiac anomalies; 81.0% (52.6 to 94.6%) in infants with both cardiac and extracardiac anomalies; and 78.9% (36.7% to 95.9%) in infants with non-structural anomalies. All genetic findings and syndromes were detected in fetuses or infants with non-isolated persistent left superior vena cava. CONCLUSION: Infants with isolated persistent left superior vena cava have good short-term outcomes postnatally, but persistent left superior vena cava is frequently associated with other malformations that have an effect on outcomes, which should be thoroughly searched for prenatally.
Asunto(s)
Cardiopatías Congénitas , Vena Cava Superior Izquierda Persistente , Femenino , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/genética , Humanos , Lactante , Embarazo , Diagnóstico Prenatal , Ultrasonografía Prenatal , Vena Cava Superior/anomalías , Vena Cava Superior/diagnóstico por imagenRESUMEN
BACKGROUND: Infantile hypercalcemia is an autosomal recessive disorder caused either by mutations in the CYP24A1 gene (20q13.2) or in the SLC34A1 gene (5q35.3). This disease is characterized by hypercalcemia, hypercalciuria and nephrocalcinosis in paediatric patients. Maternal uniparental disomy of chromosome 20 [UPD(20)mat], resulting in aberrant expression of imprinted transcripts at the GNAS locus, is a poorly characterized condition. UPD(20)mat patients manifest a phenotype similar to that of Silver-Russell syndrome and small for gestational age-short stature. CASE PRESENTATION: We report here the genetic and clinical characterization of a male child with a phenotype of infantile hypercalcemia, postnatal growth retardation, and minor dysmorphic features. Genetic analysis using a next generation sequencing panel revealed a homozygous pathogenic variant of CYP24A1. The absence of the variant in the father led to microsatellite segregation analysis, suggestive of UPD. SNP-array revealed a large terminal copy neutral loss of heterozygosity leading to CYP24A1 homozygosity. SNP-array data of parent-child trio confirmed a UPD(20)mat responsible for both infantile hypercalcemia and Silver-Russell syndrome-like traits. CONCLUSION: This is the first report of uniparental disomy of chromosome 20 revealed by infantile hypercalcemia related to CYP24A1 biallelic homozygous variants, underlying the importance of controlling allelic segregation in cases of homozygosity.
RESUMEN
Duchenne muscular dystrophy (DMD) is a common and severe X-linked myopathy, characterized by muscle degeneration due to altered or absent dystrophin. DMD has no effective cure, and the underlying molecular mechanisms remain incompletely understood. The aim of this study is to investigate the metabolic changes in DMD using mass spectrometry-based imaging. Nine human muscle biopsies from DMD patients and nine muscle biopsies from control individuals were subjected to untargeted MSI using matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry. Both univariate and pattern recognition techniques have been used for data analysis. This study revealed significant changes in 34 keys metabolites. Seven metabolites were decreased in the Duchenne biopsies compared to control biopsies including adenosine triphosphate, and glycerophosphocholine. The other 27 metabolites were increased in the Duchenne biopsies, including sphingomyelin, phosphatidylcholines, phosphatidic acids and phosphatidylserines. Most of these dysregulated metabolites are tightly related to energy and phospholipid metabolism. This study revealed a deep metabolic remodelling in phospholipids and energy metabolism in DMD. This systems-based approach enabled exploring the metabolism in DMD in an unprecedented holistic and unbiased manner with hypothesis-free strategies.
Asunto(s)
Metabolómica , Músculo Esquelético/diagnóstico por imagen , Distrofia Muscular de Duchenne/metabolismo , Adenosina Trifosfato/metabolismo , Adolescente , Adulto , Animales , Biopsia , Niño , Preescolar , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/patología , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Esfingomielinas/metabolismoRESUMEN
CHD3-related syndrome, also known as Snijders Blok-Campeau syndrome, is a rare developmental disorder described in 2018, caused by de novo pathogenic variants in the CHD3 gene. This syndrome is characterized by global developmental delay, speech delay, intellectual disability, hypotonia and behavioral disorders including autism spectrum disorder (ASD). Typical dysmorphic features include macrocephaly, hypertelorism, enophthalmia, sparse eyebrows, bulging forehead, midface hypoplasia, prominent nose and pointed chin. To our knowledge, there have been no other clinical descriptions of patients since the initial publication. We report the clinical description of a 21-year-old patient harboring a pathogenic de novo variant in CHD3. We reviewed the clinical features of the 35 previously reported patients. Main features were severe intellectual disability, dysmorphic facies, macrocephaly, cryptorchidism, pectus carinatum, severe ophthalmologic abnormalities and behavioral disorders including ASD, and a frank happy demeanor. Hypersociability, which was a noticeable clinical feature in our case, despite ASD, is an uncommon behavioral feature in syndromic intellectual disabilities. Our report supports hypersociability as a suggestive feature of CHD3-related syndrome along with developmental delay, macrocephaly and a dysmorphic facies.
Asunto(s)
Anomalías Craneofaciales/genética , ADN Helicasas/genética , Discapacidades del Desarrollo/genética , Megalencefalia/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Conducta Social , Anomalías Craneofaciales/patología , Discapacidades del Desarrollo/patología , Humanos , Masculino , Megalencefalia/patología , Mutación , Síndrome , Adulto JovenRESUMEN
BACKGROUND: FLNA Loss-of-Function (LoF) causes periventricular nodular heterotopia type 1 (PVNH1), an acknowledged cause of seizures of various types. Neurological symptoms are inconstant, and cardiovascular (CV) defects or connective tissue disorders (CTD) have regularly been associated. We aimed at refining the description of CV and CTD features in patients with FLNA LoF and depicting the multisystemic nature of this condition. METHODS: We retrospectively evaluated FLNA variants and clinical presentations in FLNA LoF patient with at least one CV or CTD feature, from three cohorts: ten patients from the French Reference Center for Rare Vascular Diseases, 23 patients from the national reference diagnostic lab for filaminopathies-A, and 59 patients from literature review. RESULTS: Half of patients did not present neurological symptoms. Most patients presented a syndromic association combining CV and CTD features. CV anomalies, mostly aortic aneurysm and/or dilation were present in 75% of patients. CTD features were present in 75%. Variants analysis demonstrated an enrichment of coding variants in the CH1 domain of FLNA protein. CONCLUSION: In FLNA LoF patients, the absence of seizures should not be overlooked. When considering a diagnosis of PVNH1, the assessment for CV and CTD anomalies is of major interest as they represent interlinked features. We recommend systematic study of FLNA within CTD genes panels, regardless of the presence of neurological symptoms.
Asunto(s)
Enfermedades del Tejido Conjuntivo , Heterotopia Nodular Periventricular , Tejido Conectivo/metabolismo , Enfermedades del Tejido Conjuntivo/complicaciones , Enfermedades del Tejido Conjuntivo/genética , Filaminas/genética , Filaminas/metabolismo , Humanos , Heterotopia Nodular Periventricular/complicaciones , Heterotopia Nodular Periventricular/genética , Estudios RetrospectivosRESUMEN
Fingerprint bodies are observed in a variety of clinical situations with no definite genetic cause identified so far. We report for the first time the association of fingerprint bodies with rods in a patient who developed a slowly progressive myopathy affecting the face and limb extremities. Ultrastructural examination first disclosed fingerprint bodies and on a second biopsy, associated cytoplasmic bodies and rods. Next Generation Sequencing panel of congenital nemaline myopathy genes allowed the identification of two novel variants, a deleterious missense variant (c.1628G>T, p.Arg543Leu) located in the WASP-homology 2 domain, and a deletion (c.366delG, p.Lys122AsnFs*6) in the LMOD3 gene, generally causing severe nemaline myopathy with antenatal onset and early death. Recently, a less severe phenotype similar to our case has been reported. Our study confirms the existence of milder phenotypes linked to LMOD3 mutations and underlines that fingerprint bodies, though not specific, may be an early ultrastructural marker that could be linked, among others, to nemaline myopathy.
Asunto(s)
Proteínas de Microfilamentos/genética , Fibras Musculares Esqueléticas/ultraestructura , Enfermedades Musculares , Miopatías Nemalínicas , Adulto , Humanos , Masculino , Microscopía Electrónica , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Miopatías Nemalínicas/diagnóstico , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Miopatías Nemalínicas/fisiopatología , Fenotipo , Adulto JovenRESUMEN
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic component whose knowledge evolves quickly. Next-generation sequencing is the only effective technology to deal with the high genetic heterogeneity of ASD in a clinical setting. However, rigorous criteria to classify rare genetic variants conferring ASD susceptibility are currently lacking. We have performed whole-exome sequencing to identify both nucleotide variants and copy number variants (CNVs) in 253 ASD patients, including 68 patients with intellectual disability (ID) and 90 diagnosed as Asperger syndrome. Using explicit criteria to classify both susceptibility genes and susceptibility variants we prioritized 217 genes belonging to the following categories: syndromic genes, genes with an excess of de novo protein truncating variants and genes targeted by rare CNVs. We obtained a susceptibility variant detection rate of 19.7% (95% CI: [15-25.2%]). The rate for CNVs was 7.1% (95% CI: [4.3-11%]) and 12.6% (95% CI: [8.8-17.4%]) for nucleotide variants. The highest rate (30.1%, 95% CI: [20.2-43.2%]) was obtained in the ASD + ID subgroup. A strong contributor for at risk nucleotide variants was the recently identified set of genes (n = 81) harboring an excess of de novo protein truncating variants. Since there is currently no evidence that the genes targeted here are necessary and sufficient to cause ASD, we recommend to avoid the term "causative of ASD" when delivering the information about a variant to a family and to use instead the term "genetic susceptibility factor contributing to ASD".
Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación del ExomaRESUMEN
Predictive genetic testing (PGT) is offered to asymptomatic relatives at risk of hereditary heart disease, but the impact of result disclosure has been little studied. We evaluated the psychosocial impacts of PGT in hereditary heart disease, using self-report questionnaires (including the State-Trait Anxiety Inventory) in 517 adults, administered three times to the prospective cohort (PCo: n = 264) and once to the retrospective cohort (RCo: n = 253). The main motivations for undergoing PGT were "to remove doubt" and "for their children". The level of anxiety increased between pre-test and result appointments (p <0.0001), returned to baseline after the result (PCo), and was moderately elevated at 4.4 years (RCo). Subjects with a history of depression or with high baseline anxiety were more likely to develop anxiety after PGT result (p = 0.004 and p <0.0001, respectively), whatever it was. Unfavourable changes in professional and/or family life were observed in 12.4% (PCo) and 18.7% (RCo) of subjects. Few regrets about PGT were expressed (0.8% RCo, 2.3% PCo). Medical benefit was not the main motivation, which emphasises the role of pre/post-test counselling. When PGT was performed by expert teams, the negative impact was modest, but careful management is required in specific categories of subjects, whatever the genetic test result.
RESUMEN
Choriocarcinoma is a highly malignant neoplasm resulting from the malignant transformation of proliferating trophoblastic cells and the molecular mechanisms leading to this transformation remain to be characterized. We report here the first case of a female germline TP53 mutation carrier who developed, as a first tumour, a lung choriocarcinoma, 6 months after a normal delivery. Molecular analyses established the gestational origin of the choriocarcinoma and showed, within the tumour, the presence of the germline mutant TP53 allele and loss of the wild-type allele. Resistance to methotrexate chemotherapy led to perform a surgical resection of the tumour. In agreement with the permissive role of TP53 mutations to oncogenic events, this report strongly suggests that TP53 mutations may promote malignant transformation of proliferating trophoblastic cells. Therefore, female TP53 mutation carriers may have an increased risk of developing gestational choriocarcinoma and might benefit from ß-hCG level monitoring after pregnancy.
Asunto(s)
Coriocarcinoma/genética , Gonadotropina Coriónica Humana de Subunidad beta/sangre , Neoplasias Pulmonares/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Coriocarcinoma/diagnóstico , Coriocarcinoma/patología , Coriocarcinoma/cirugía , Gonadotropina Coriónica Humana de Subunidad beta/metabolismo , Femenino , Mutación de Línea Germinal , Humanos , Pulmón/patología , Pulmón/cirugía , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Masculino , Neumonectomía/métodosRESUMEN
PURPOSES: Hydrops fetalis is a life-threatening fetal condition, and 85% of all cases are classified as nonimmune hydrops fetalis (NIHF). Up to 15% of NIHF cases may be due to inborn errors of metabolism (IEM), but a large proportion of cases linked to metabolic disorders remains undiagnosed. This lack of diagnosis may be related to the limitations of conventional biological procedures, which involve sequential investigations and require multiple samples and steps. In addition, this approach is time consuming. We have developed a next-generation sequencing (NGS) panel to investigate metabolic causes of NIHF, ascites, and polyhydramnios associated to another fetal abnormality. METHODS: The hydrops fetalis (HydFet) panel was designed to cover the coding regions and flanking intronic sequences of 41 genes. A retrospective study of amniotic fluid samples from 40 subjects was conducted. A prospective study was subsequently initiated, and six samples were analyzed using the NGS panel. RESULTS: Five IEM diagnoses were made using the HydFet panel (Niemann-Pick type C (NPC), Barth syndrome, HNF1Β deficiency, GM1 gangliosidosis, and Gaucher disease). This analysis also allowed the identification of 8p sequence triplication in an additional case. CONCLUSION: NGS combined with robust bioinformatics analyses is a useful tool for identifying the causative variants of NIHF. Subsequent functional characterization of the protein encoded by the altered gene and morphological studies may confirm the diagnosis. This paradigm shift allows a significant improvement of IEM diagnosis in NIHF.