Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 375(2091)2017 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-28265021

RESUMEN

Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions.This article is part of the themed issue 'Wind energy in complex terrains'.

2.
J Chem Phys ; 121(22): 11240-9, 2004 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-15634080

RESUMEN

We report on the low-energy electron-induced production of aldehydes within thin solid films of tetrahydrofuran (THF) condensed on a solid Kr substrate. The aldehyde fragments, which remain trapped within the bulk of the THF film, are detected in situ via their 3,1(n-->pi*) and 3(pi-->pi*) electronic transitions and vibrational excitations in the ground state using high-resolution electron-energy-loss spectroscopy. The production of aldehyde is studied as a function of the electron exposure, film thickness, and incident electron energy between 1 and 18.5 eV. The aldehyde production is calibrated in terms of an electron scattering cross section, which is found to be typically 6-7 x 10(-17) cm(2) between 11 and 19 eV. Its energy dependence is characterized by a small feature around 3 eV, a strong rise from 6 eV up to a maximum at 12.5 eV, followed by two structures centered around 15 and 18 eV. The aldehyde production is discussed in terms of the formation of electron resonances or transient anion states, which may lead to the fragmentation of the molecule and explain the structures seen in the energy dependence of the measured cross section.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA