Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Immunol ; 23(5): 781-790, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383307

RESUMEN

Although mRNA vaccine efficacy against severe coronavirus disease 2019 remains high, variant emergence has prompted booster immunizations. However, the effects of repeated exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens on memory T cells are poorly understood. Here, we utilize major histocompatibility complex multimers with single-cell RNA sequencing to profile SARS-CoV-2-responsive T cells ex vivo from humans with one, two or three antigen exposures, including vaccination, primary infection and breakthrough infection. Exposure order determined the distribution between spike-specific and non-spike-specific responses, with vaccination after infection leading to expansion of spike-specific T cells and differentiation to CCR7-CD45RA+ effectors. In contrast, individuals after breakthrough infection mount vigorous non-spike-specific responses. Analysis of over 4,000 epitope-specific T cell antigen receptor (TCR) sequences demonstrates that all exposures elicit diverse repertoires characterized by shared TCR motifs, confirmed by monoclonal TCR characterization, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and current vaccination protocols continue to expand and differentiate spike-specific memory.


Asunto(s)
COVID-19 , SARS-CoV-2 , Linfocitos T CD8-positivos , Humanos , Fenotipo , Receptores de Antígenos de Linfocitos T/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas , Vacunas de ARNm
2.
J Periodontal Res ; 54(4): 444-452, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30802957

RESUMEN

BACKGROUND AND OBJECTIVE: Both chronic and aggressive periodontal disease are associated with vitamin D deficiency. The active form of vitamin D, 1,25(OH)2 D3 , induces the expression of the antimicrobial peptide LL-37 and innate immune mediators in cultured human gingival epithelial cells (GECs). The aim of this study was to further delineate the mechanism by which vitamin D enhances the innate defense against the development of periodontal disease (PD). MATERIALS AND METHODS: Wild-type C57Bl/6 mice were made deficient in vitamin D by dietary restriction. Cultured primary and immortalized GEC were stimulated with 1,25(OH)2 D3 , followed by infection with Porphyromonas gingivalis, and viable intracellular bacteria were quantified. Conversion of vitamin D3 to 25(OH)D3 and 1,25(OH)2 D3 was quantified by ELISA. Effect of vitamin D on basal IL-1α expression in mice was determined by topical administration to the gingiva of wild-type mice, followed by qRT-PCR. RESULTS: Dietary restriction of vitamin D led to alveolar bone loss and increased inflammation in the gingiva in the mouse model. In primary human GEC and established human cell lines, treatment of GEC with 1,25(OH)2 D3 inhibited the intracellular growth of P. gingivalis. Cultured GEC expressed two 25-hydroxylases (CYP27A1 and CYP2R1), as well as 1-α hydroxylase, enabling conversion of vitamin D to both 25(OH)D3 and 1,25(OH)2 D3 . Topical application of both vitamin D3 and 1,25(OH)2 D3 to the gingiva of mice led to rapid inhibition of IL-1α expression, a prominent pro-inflammatory cytokine associated with inflammation, which also exhibited more than a 2-fold decrease from basal levels in OKF6/TERT1 cells upon 1,25(OH)2 D3 treatment, as determined by RNA-seq. CONCLUSION: Vitamin D deficiency in mice contributes to PD, recapitulating the association seen in humans, and provides a unique model to study the development of PD. Vitamin D increases the activity of GEC against the invasion of periodontal pathogens and inhibits the inflammatory response, both in vitro and in vivo. GEC can convert inactive vitamin D to the active form in situ, supporting the hypothesis that vitamin D can be applied directly to the gingiva to prevent or treat periodontal disease.


Asunto(s)
Pérdida de Hueso Alveolar/fisiopatología , Calcifediol/farmacología , Encía/fisiología , Inflamación/fisiopatología , Vitamina D/farmacología , Pérdida de Hueso Alveolar/inmunología , Animales , Células Cultivadas , Humanos , Inflamación/inmunología , Interleucina-1alfa/inmunología , Ratones , Ratones Endogámicos C57BL , Porphyromonas gingivalis , Vitaminas/farmacología
3.
Cell Rep ; 38(10): 110482, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263574

RESUMEN

Infection and vaccination repeatedly expose individuals to antigens that are conserved between influenza virus subtypes. Nevertheless, antibodies recognizing variable influenza epitopes greatly outnumber antibodies reactive against conserved epitopes. Elucidating factors contributing to the paucity of broadly reactive influenza antibodies remains a major obstacle for developing a universal influenza vaccine. Here, we report that inducing broadly reactive influenza antibodies increases autoreactive antibodies in humans and mice and exacerbates disease in four distinct models of autoimmune disease. Importantly, transferring broadly reactive influenza antibodies augments disease in the presence of inflammation or autoimmune susceptibility. Further, broadly reactive influenza antibodies spontaneously arise in mice with defects in B cell tolerance. Together, these data suggest that self-tolerance mechanisms limit the prevalence of broadly reactive influenza antibodies, which can exacerbate disease in the context of additional risk factors.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Autoinmunidad , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Humanos , Ratones
4.
Cell Host Microbe ; 30(1): 83-96.e4, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34965382

RESUMEN

SARS-CoV-2 infection causes diverse outcomes ranging from asymptomatic infection to respiratory distress and death. A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoVs) impacts susceptibility to SARS-CoV-2 infection or immunity following infection and vaccination. Therefore, we analyzed samples from the same individuals before and after SARS-CoV-2 infection or vaccination. We found hCCCoV antibody levels increase after SARS-CoV-2 exposure, demonstrating cross-reactivity. However, a case-control study indicates that baseline hCCCoV antibody levels are not associated with protection against SARS-CoV-2 infection. Rather, higher magnitudes of pre-existing betacoronavirus antibodies correlate with more SARS-CoV-2 antibodies following infection, an indicator of greater disease severity. Additionally, immunization with hCCCoV spike proteins before SARS-CoV-2 immunization impedes the generation of SARS-CoV-2-neutralizing antibodies in mice. Together, these data suggest that pre-existing hCCCoV antibodies hinder SARS-CoV-2 antibody-based immunity following infection and provide insight on how pre-existing coronavirus immunity impacts SARS-CoV-2 infection, which is critical considering emerging variants.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , COVID-19/inmunología , Resfriado Común/inmunología , Inmunidad Humoral/inmunología , SARS-CoV-2/inmunología , Animales , Infecciones Asintomáticas , COVID-19/virología , Estudios de Casos y Controles , Línea Celular , Resfriado Común/virología , Reacciones Cruzadas/inmunología , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Glicoproteína de la Espiga del Coronavirus/inmunología
5.
medRxiv ; 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34341799

RESUMEN

Although mRNA vaccine efficacy against severe COVID-19 remains high, variant emergence and breakthrough infections have changed vaccine policy to include booster immunizations. However, the effect of diverse and repeated antigen exposures on SARS-CoV-2 memory T cells is poorly understood. Here, we utilize DNA-barcoded MHC-multimers combined with scRNAseq and scTCRseq to capture the ex vivo profile of SARS-CoV-2-responsive T cells within a cohort of individuals with one, two, or three antigen exposures, including vaccination, primary infection, and breakthrough infection. We found that the order of exposure determined the relative distribution between spike- and non-spike-specific responses, with vaccination after infection leading to further expansion of spike-specific T cells and differentiation to a CCR7-CD45RA+ effector phenotype. In contrast, individuals experiencing a breakthrough infection mount vigorous non-spike-specific responses. In-depth analysis of over 4,000 epitope-specific T cell receptor sequences demonstrates that all types of exposures elicit diverse repertoires characterized by shared, dominant TCR motifs, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and that current vaccination protocols continue to expand and differentiate spike-specific memory responses.

6.
Curr Med Chem ; 27(9): 1420-1443, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31385762

RESUMEN

Peptides with broad-spectrum antimicrobial activity are found widely expressed throughout nature. As they participate in a number of different aspects of innate immunity in mammals, they have been termed Host Defense Peptides (HDPs). Due to their common structural features, including an amphipathic structure and cationic charge, they have been widely shown to interact with and disrupt microbial membranes. Thus, it is not surprising that human HDPs have activity against enveloped viruses as well as bacteria and fungi. However, these peptides also exhibit activity against a wide range of non-enveloped viruses as well, acting at a number of different steps in viral infection. This review focuses on the activity of human host defense peptides, including alpha- and beta-defensins and the sole human cathelicidin, LL-37, against both enveloped and non-enveloped viruses. The broad spectrum of antiviral activity of these peptides, both in vitro and in vivo suggest that they play an important role in the innate antiviral defense against viral infections. Furthermore, the literature suggests that they may be developed into antiviral therapeutic agents.


Asunto(s)
Antivirales/farmacología , Animales , Bacterias , Hongos , Humanos , Inmunidad Innata , Péptidos , Virosis
7.
mBio ; 11(6)2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144374

RESUMEN

Enhancing the generation of broadly reactive antibodies against influenza A virus (IAV) is a pertinent goal toward developing a universal IAV vaccine. While antibodies that bind conserved IAV epitopes have been identified in humans, antibodies specific for the variable epitopes are much more prevalent than antibodies recognizing conserved epitopes. It is important to define the factors that limit the generation of broadly reactive IAV antibodies in order to develop an effective universal IAV vaccine. The predominant theory is that competition within germinal centers favors the synthesis of high-affinity antibodies specific for the variable region of the virus, and limits antibodies specific for conserved IAV epitopes. Here, we show that reducing germinal center formation and removing competition with high-affinity antibodies was not sufficient to increase broadly reactive IAV antibodies or enhance protection against distinct IAV subtypes. These data disprove the prevailing hypothesis that broadly reactive IAV antibodies are rare due to competition within germinal centers, and reveal the critical need to further investigate factors that limit broadly reactive IAV antibodies. Additionally, our data show that IAV-specific IgM antibodies persist in mice in the absence of germinal centers, highlighting the protective capacity of germinal center-independent IgM antibodies, which are not typically considered when testing correlates of protection, and offer an alternate target for delivering a universal IAV vaccine.IMPORTANCE It is estimated that 250,000 to 650,000 individuals worldwide die each year from seasonal influenza A virus (IAV) infections. Current vaccines provide little protection against newly emerging strains. Thus, considerable effort is focused on enhancing the generation of broadly reactive IAV antibodies in order to develop a universal IAV vaccine. However, broadly reactive IAV antibodies are rare and the factors that limit their generation are not completely understood. Our data disprove the prevailing hypothesis that broadly reactive IAV antibodies are uncommon due to competition in the germinal centers with antibodies specific for the variable, hemagglutinin (HA) head. Understanding the factors that constrain development of antibodies specific for conserved regions of IAV is imperative for developing an effective universal IAV vaccine, which could potentially circumvent a catastrophic pandemic. These findings are significant as they highlight the importance of investigating other mechanisms that contribute to the paucity of broadly reactive IAV antibodies.


Asunto(s)
Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos/inmunología , Centro Germinal/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Animales , Anticuerpos Neutralizantes , Especificidad de Anticuerpos/inmunología , Reacciones Cruzadas/inmunología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunización Secundaria , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Inmunohistoquímica , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Ratones , Ratones Transgénicos , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología
8.
Antiviral Res ; 158: 25-33, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30076864

RESUMEN

Oral epithelial cells (OECs) represent the first line of defense against viruses that are spread via saliva, including Kaposi's sarcoma-associated herpesvirus (KSHV). Infection of humans by KSHV and viral pathogenesis begins by infecting OECs. One method OECs use to limit viral infections in the oral cavity is the production of antimicrobial peptides (AMPs), or host defense peptides (HDPs). However, no studies have investigated the antiviral activities of any HDP against KSHV. The goal of this study was to determine the antiviral activity of one HDP, LL-37, against KSHV in the context of infecting OECs. Our results show that LL-37 significantly decreased KSHV's ability to infect OECs in both a structure- and dose-dependent manner. However, this activity does not stem from affecting OECs, but instead the virions themselves. We found that LL-37 exerts its antiviral activity against KSHV by disrupting the viral envelope, which can inhibit viral entry into OECs. Our data suggest that LL-37 exhibits a marked antiviral activity against KSHV during infection of oral epithelial cells, which can play an important role in host defense against oral KSHV infection. Thus, we propose that inducing LL-37 expression endogenously in oral epithelial cells, or potentially introducing as a therapy, may help restrict oral KSHV infection and ultimately KSHV-associated diseases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/farmacología , Células Epiteliales/virología , Infecciones por Herpesviridae/tratamiento farmacológico , Herpesvirus Humano 8/efectos de los fármacos , Línea Celular , Herpesvirus Humano 8/patogenicidad , Humanos , Queratinocitos , Boca/virología , Virión/efectos de los fármacos , Virión/metabolismo , Internalización del Virus/efectos de los fármacos , Catelicidinas
9.
Sci Rep ; 7(1): 4353, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28659617

RESUMEN

Lethal systemic fungal infections of Candida species are increasingly common, especially in immune compromised patients. By in vitro screening of small molecule mimics of naturally occurring host defense peptides (HDP), we have identified several active antifungal molecules, which also exhibited potent activity in two mouse models of oral candidiasis. Here we show that one such compound, C4, exhibits a mechanism of action that is similar to the parent HDP upon which it was designed. Specifically, its initial interaction with the anionic microbial membrane is electrostatic, as its fungicidal activity is inhibited by cations. We observed rapid membrane permeabilization to propidium iodide and ATP efflux in response to C4. Unlike the antifungal peptide histatin 5, it did not require energy-dependent transport across the membrane. Rapid membrane disruption was observed by both fluorescence and electron microscopy. The compound was highly active in vitro against numerous fluconazole-resistant clinical isolates of C. albicans and non-albicans species, and it exhibited potent, dose-dependent activity in a mouse model of invasive candidiasis, reducing kidney burden by three logs after 24 hours, and preventing mortality for up to 17 days. Together the results support the development of this class of antifungal drug to treat invasive candidiasis.


Asunto(s)
Antifúngicos/farmacología , Factores Celulares Derivados del Huésped/farmacología , Interacciones Huésped-Patógeno , Membranas/efectos de los fármacos , Péptidos/farmacología , Antifúngicos/química , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Candida albicans/ultraestructura , Complemento C4/inmunología , Resistencia a la Enfermedad , Farmacorresistencia Fúngica , Factores Celulares Derivados del Huésped/química , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos/química
10.
J Exp Bot ; 55(398): 955-6, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14990625

RESUMEN

In common with several other respiratory and photosynthetic enzymes, a sub-population of cytosolic phosphoglycerate kinase (PGK) occurs in the nucleus in pea leaves and shoots. The full-length cDNA encoding pea cytosolic PGK has been cloned and sequenced, revealing not only the PGK 'signature' but also a nuclear localization signal (NLS). A translational fusion of PGK and GFP was used to transform tobacco BY-2 cells resulting in GFP locating to the cell nuclei.


Asunto(s)
Fosfoglicerato Quinasa/genética , Pisum sativum/enzimología , Pisum sativum/genética , Secuencia de Aminoácidos , Clonación Molecular , Citosol/enzimología , Cartilla de ADN , Datos de Secuencia Molecular , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/metabolismo
11.
Proc Natl Acad Sci U S A ; 99(16): 10865-9, 2002 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-12119413

RESUMEN

Homologues of the yeast ubiquitin ligase-associated protein SGT1 are required for disease resistance in plants mediated by nucleotide-binding site/leucine-rich repeat (NBS-LRR) proteins. Here, by silencing SGT1 in Nicotiana benthamiana, we extend these findings and demonstrate that SGT1 has an unexpectedly general role in disease resistance. It is required for resistance responses mediated by NBS-LRR and other R proteins in which pathogen-derived elicitors are recognized either inside or outside the host plant cell. A requirement also exists for SGT1 in nonhost resistance in which all known members of a host species are resistant against every characterized isolate of a pathogen. Our findings show that silencing SGT1 affects diverse types of disease resistance in plants and support the idea that R protein-mediated and nonhost resistance may involve similar mechanisms.


Asunto(s)
Proteínas Portadoras/metabolismo , Ligasas/metabolismo , Enfermedades de las Plantas , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Silenciador del Gen , Vectores Genéticos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Proteínas de Plantas/genética , Virus de Plantas , Virus ARN , Homología de Secuencia de Aminoácido , Nicotiana/genética , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA